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A B S T R A C T

The main research question of this thesis is to develop a theory that
would provide foundations for the development of Web of Things
(WoT) systems. A theory for WoT shall provide a model of the ‘things’
WoT agents relate to such that these relations determine what in-
teractions take place between these agents. This thesis presents a
knowledge-based approach in which the semantics of WoT systems
is given by a transformation (an homomorphism) between a graph
representing agent interactions and a knowledge graph describing
‘things’. It focuses on three aspects of knowledge graphs in particu-
lar: the vocabulary with which assertions can be made, the rules that
can be defined over this vocabulary and its serialization to efficiently
exchange pieces of a knowledge graph. Each aspect is developed in a
dedicated chapter, with specific contributions to the state-of-the-art.

The need for a unified vocabulary to describe ‘things’ in WoT and
the Internet of Things (IoT) has been identified early on in the litera-
ture. Many proposals have been consequently published, in the form
of Web ontologies. In Ch. 2, a systematic review of these proposals
is being developed, as well as a comparison with the data models
of the principal IoT frameworks and protocols. The contribution of
the thesis in that respect is an alignment between the Thing Descrip-
tion (TD) model and the Semantic Sensor Network (SSN) ontology,
two standards of the World Wide Web Consortium (W3C). The scope
of this thesis is generally limited to Web standards, especially those
defined by the Resource Description framework (RDF).

Web ontologies do not only expose a vocabulary but also rules to
extend a knowledge graph by means of reasoning. Starting from a
set of TD documents, new relations between ‘things’ can be “discov-
ered” this way, indicating possible interactions between the servients
that relate to them. The experiments presented in Ch. 3 were done
on the basis of this semantic discovery framework on two use cases:
a building automation use case provided by Intel Labs and an indus-
trial control use case developed internally at Siemens. The relations to
discover often involve anonymous nodes in the knowledge graph: the
chapter also introduces a novel skolemization algorithm to correctly
process these nodes on a well-defined fragment of the Web Ontology
Language (OWL).

Finally, because this semantic discovery framework relies on the
exchange of TD documents, Ch. 4 introduces a binary format for
RDF that proves efficient in serializing TD assertions such that even
the smallest WoT agents, i.e. micro-controllers, can store and process
them. A formalization for the semantics-preserving compaction and
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querying of TD documents is also introduced in this chapter, at the
basis of an embedded RDF store called the µRDF store. The ability
of all WoT agents to query logical assertions about themselves and
their environment, as found in TD documents, is a first step towards
knowledge-based intelligent systems that can operate autonomously
and dynamically in a decentralized way. The µRDF store is an attempt
to illustrate the practical outcomes of the theory of WoT developed
throughout this thesis.
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Z U S A M M E N FA S S U N G

Die Dissertation entwickelt eine theoretische Grundlage für die Spe-
zifikation Web of Things (WoT)-Systemen. Die Spezifikation der WoT-
Systeme basiert auf einem Modell für die Dinge, oder Things, mit de-
nen WoT-Agenten Beziehungen schaffen, welche Interaktionen zwis-
chen Agenten erlauben. Diese Dissertation stellt einen wissensbasier-
ten Ansatz vor, in dem die Semantik von Wot-Systemen als eine
Transformation von einem Graphen von Agenten-Interaktionen nach
einem Knowledge Graph definiert ist. Diese Arbeit deckt genau drei
Aspekte Knowledge Graphs ab: das Vokabular, mit dem logische
Schlüsse formuliert werden, die Regeln, die auf einem Vokabular
basieren können und Serialisierung, um den effizienten Austausch
zwischen Teilen eines Knowledge Graph zu ermöglichen. Alle drei
Aspekt werden mit ihren wissenschaftlichen Beitrag in einem eige-
nen Kapitel adressiert.

Der Bedarf an einem vereinigten Vokabular, um im WoT und dem
Internet of Things (IoT) Things zu beschreiben, wurden in der Lit-
eratur frühzeitig identifiziert. Viele Ansatze wurden diesbezüglich
vor allem als Web Ontologien veröffentlicht. Im Kapitel 2 werden
diese Ansätze miteinander, sowie mit Datenmodelle dominierender
IoT-Frameworks und Protokolle verglichen. Der Beitrag der Disserta-
tion diesbezüglich ist die Verschmelzung des WoT Thing Description
(TD) Modells und der Semantic Sensor Network (SSN) Ontologie, zwei
vom World Wide Web Consortium (W3C) veröffentlichte Standards, in
eine einzige Ontologie. Der Rahmen dieser Dissertation wird auf Web
Standards begrenzt, insbesondere im Resource Description Framework
(RDF) enthaltenen Standards.

Web Ontologien bestehen nicht nur aus einm Vokabular, sondern
auch aus Regel, um einen Knowledge Graphen durch Inferenz zu
erweitern. Anhand einer Menge von TD-Dokumenten können neue
Beziehungen zwischen Things abgeleitet werden und dadurch neue
Interaktionen zwischen denjenigen Agenten, die sich auf diese Things
beziehen eingeführt werden. Die im Kapitel 3 beschriebenen Experi-
mente setzen dieses semantische Framework in zwei Domäne um:
Gebäudeautomatisierung und Industrielle Kontrollsysteme. Das Er-
kennen impliziter Beziehungen zwischen Things hängt in bestimmten
Fällen von sogenannten anonymen Knoten im Graphen ab: das Kapi-
tel führt einen neuen Skolemization Algorithmus ein, um diese Knoten
für einen bestimmten Teil der Web Ontology Language (OWL) korrekt
zu verarbeiten.

Zum Schluss, da die Umsetzung dieses semantischen Frameworks
den Austausch von TD-Dokumenten erfordert, wird im Kapitel 4 ein
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binäres Format für RDF eingeführt, welches sich als sehr effizient
für die Serialisierung erweist, damit auch kleine WoT Agenten, näm-
lich Mikrocontroller, TD-Dokumente speichern und verarbeiten kön-
nen. Eine formale Definition für die Verdichtung und die Abfrage
von TD-Dokumenten wird in diesem Kapitel eingeführt. Das Kapitel
beschreibt auch die Implementierung einer eingebetteten RDF Daten-
bank, die µRDF Store genannt wurde. Die Fähigkeit WoT-Agenten
logische Schlüsse über sich selbst und ihre Umgebung zu ziehen
ist der erste Schritt in Richtung eines wissensbasierten intelligenten
Systems, das autonom, dynamisch und dezentral agieren kann. Der
µRDF Store zeigt die praktischen Vorteile, der in dieser Dissertation
entwickelten Theorie für WoT auf.
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1
I N T R O D U C T I O N

1.1 the emergence of the web of things

The idea of a Web of ‘things’ that emerged in the past decade has
a simple premise: there is more and more interconnected computing
agents involved in industrial networks. Making these agents interact
requires a high level of interoperability, which requires in turn to
rethink the general architecture of industrial networks. Web technolo-
gies, which have always been designed for system interoperability,
represent a good approach to solve this issue. The present work is an
attempt to formalize agent interactions in this context and develop
a theory to make interactions be carried out in an autonomous way.
Before addressing the core of the topic, let us relate an anecdote to un-
derstand what motivated such an approach and why interoperability
has become paramount in industrial systems.

In 2010, a malicious computer program later named “Stuxnet” was
detected on millions of industrial controllers around the world [41].
This program was designed to scan a network to find Siemens Simatic
S7 controllers that connected to field devices over a Profibus indus-
trial bus. Profibus devices have a 16-bit identifier; Stuxnet was look-
ing specifically for devices with the identifier 0x9500. Moreover, the
program was expecting a structure of 6 × 64 field devices connected
to the same S7 instance. After several years of investigation, analysts
inferred from these elements that Stuxnet was targeting a uranium
enrichmnent plant in Natanz, Iran. To come to this conclusion, they
also had to gather background knowledge about industrial networks,
in particular the fact that 0x9500 is the identifier used by Siemens for
frequency converters, that this kind of devices is usually used to con-
trol centrifuges and that the structure coded in Stuxnet corresponded
to the way centrifuges were organized in the Natanz facility.

The discovery of Stuxnet sheds light on two aspects of industrial
networks. First, the extent to which Stuxnet spread across the world
indicates how far the Internet has reached specialized networks like
those used in plants and large buildings. Indeed, most industrial con-
trollers, like Siemens S7, have an interface to an Internet Protocol (IP)
network in addition to their interface to a field bus, which is the
channel Stuxnet used to spread. A quick search for public IP devices
reports 4, 858 distinct IP addresses in more than 50 different coun-
tries for the keyword s71. Most industrial networks are isolated from

1 request made on https://censys.io/ on January 13th, 2019.

1

https://censys.io/


2 introduction

public Internet and this figure only represents the tip of the iceberg,
which must reach millions of connected devices.

Second, besides having low security standards, it is typical of indus-
trial networks to introduce vendor-specific or hard-coded elements at
the interface between systems. It is e.g. only known to Siemens cus-
tomer that 0x9500 is the identifier used for frequency converters over
Profibus. Similarly, the topology of the Natanz facility with six rows
of 64 centrifuges was hard-coded (devices had fixed identifiers in the
network), which allowed a malicious program to discriminate this
network over thousands of others.

These two trends in industrial networks are somewhat contradic-
tory. The attempt to normalize communication in industrial systems
by relying on IP protocols is hindered by the lack of standardization
across systems at the application level, which translates into many
hard-coded elements. Higher-level communication protocols are di-
verse, they do not share data models and are often domain-specific (de
facto or by design), causing system integration to be labor-intensive
and specialized. In other words, interoperability between industrial
systems is low, despite a generally high connectivity.

The most successful approach towards interoperability in the past
decade has consisted in providing a Web interface to individual sys-
tems, to take advantage of mature Web technologies and the general
expertise among developers to build applications on top of the Web.
This approach, which would extend the coverage of the Web to in-
dustrial systems is referred to in the scientific literature as the Web of
Things (WoT) and the World Wide Web Consortium (W3C) is working
on standardizing some of its building blocks. In fact, most industrial
controllers expose a back-end Web server for remote administration,
which makes them theoretically part of WoT already.

Contrary to current industrial systems, whose hierarchical design
addresses strict functional requirements like low latency and deter-
ministic behaviors, the Web is highly decentralized. WoT systems
therefore imply complex hyperlink-driven interactions that must be
formalized if these systems are to meet similar requirements. The set
of WoT technologies that the W3C is gathering addresses numerous
aspects of WoT but it leaves room for a theory of WoT systems and
their interactions. This thesis presents a knowledge-based approach
to this problem by relying on Web ontologies and their formal seman-
tics.

1.2 problem statement : semantics for the web of things

Starting from a history of WoT and its terminology, it is possible to
choose various focus points to aim at in a scientific research work.
The brief history exposed in the following leads to the problem of
identifying and describing ‘things’ in systems made of sensors and
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actuators, which is introduced in a dedicated section. Then, a theory
of WoT systems based on graph structures is being developed.

1.2.1 A Brief History

The term ‘Web of Things’ echoes the earlier concept of Internet of
Things (IoT) [1, 46]. The IoT itself greatly overlaps with research fields
that predate it and that developed their own terminology. We start by
summarizing the main fields from which the present work work and
most theoretical works on WoT borrow, in chronological order:

cybernetics (1948) Science related to the automatic control of sys-
tems in a broad sense, from industrial systems to living organ-
isms [121]. One of the central concepts of cybernetics is that
of feedback loop, a structure in which the controlling part of a
system can observe the effects of actions of its mechanical part.

ubiquitous computing (1993) Method of computation including
all possible forms of processors, from powerful Cloud servers to
micro-controller devices [94, 120]. Ubiquitous computing aims
at making computing transparent to end users of computer-
based systems.

ambient intelligence (1998) Characteristic of computer systems
capable of sensing their environment and adapting their behav-
ior accordingly [122]. The term was first coined in the context
of consumer electronics, it referred to the increasing capacity
of electronic devices to perform general purpose computation.
Ambient intelligence later converged with ubiquitous comput-
ing as one research area.

wireless sensor networks (2000) Type of communication net-
work designed for monitoring, usually composed of constrained
nodes with sensing and routing capabilities [84]. Sensor net-
works have been a recurrent research field over more than 50

years but their large adoption began with new hardware design
and the development of tailored operating systems like TinyOS
[80] and Contiki [30].

internet of things (2000) Interconnection of any digitally iden-
tified objects in the physical world with the rest of the Inter-
net. The development of the IoT goes hand in hand with Radio-
Frequency identification (RFID) [1, 103]. It shares many charac-
teristics with Ambient Intelligence, with the exception that the
IoT concentrates on the identificiation of inanimate products,
e.g. for supply chain management, as opposed to electronic
products that become “intelligent” by themselves.

pervasive computing (2001) Synonym for Ubiquitous Comput-
ing [104]. The term ‘pervasive’ stresses the importance of sens-
ing in ubiquitous computing.
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cyber-physical system (2007) Industrial system associating phys-
ical equipment with digital control [76]. The study of cyber-
physical systems tends to subsume cybernetics by incorporating
advances in embedded system research, including in the fields
mentioned above.

These different definitions refer to systems of different kinds, at dif-
ferent scales. In particular, sensor networks only involve low-power
devices communicating in a mesh network while cyber-physical sys-
tems can include complex machinery that integrates both sensing and
actuation capabilities. IoT systems can even deal with inanimate ob-
jects with passive RFID tags. As a result, components of IoT (and
WoT) systems are referred to as ‘things’, arguably the most generic
term to refer to physical objects. However, although all systems con-
sidered here include sensing, the concept of ‘thing’ mixes the subject
of sensing, i.e. a computational device, and the sensed object, like
manufactured products, living beings or scenes. In Sec. 2.3, a more
precise definition of ‘thing’ is provided, in which the distinction can
be made.

The modeling of sensing and actuating devices has been exten-
sively studied in the fields of ubiquitous computing and ambient
intelligence. In this thesis, it is argued that the novelty of IoT and
WoT systems lies in their capacity of exchanging information about
the objects of sensing, i.e. physical world entities that have no com-
putational capability. In contrast to modeling computational devices,
modeling physical world entities in the context of industrial systems
is still a research question. In particular, the problem of digitally iden-
tifying entities and differentiating them from each other, i.e. the prob-
lem of seeing the physical world as a collection of ‘things’, is techno-
logically unsolved.

1.2.2 The Problem of Identifying & Describing ‘Things’

Recent technologies like RFID, Bluetooth Low-Energy (BLE), Zigbee
and novel long-range radio protocols like LoRa allow computational
systems to collect large amounts of data about physical world enti-
ties. However, these technologies mostly operate at the transport layer.
They are used to transport data of any nature, no assumption is made
about the content of exchanged messages. For instance, an RFID tag
can encode an arbitrary identifier for the tagged object in a byte ar-
ray of fixed size but the protocol provides in itself no guarantee of
existence or uniqueness of the encoded identifier.

Formally, identification is a mapping of physical world entities to
a countable space like the set of natural numbers or the set of UTF-8
strings. It is always possible to define a naive numeric identification
mechanism for ‘things’, like assigning a serial number to manufac-
tured products. With the example of Stuxnet, one can also see that
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only few features are needed to discriminate one industrial system
over more than hundreds of thousands: a product type (0x9500) and
a data structure (6 × 64). However, the set of ‘things’ to identify is
potentially infinite and even if we define atomic ‘things’ as manufac-
tured products and spare parts, it is likely that not every single one
of them will be equipped with an RFID, BLE or Zigbee tag. The main
research question of this thesis is thus to find an identification mech-
anism for a collection of ‘things’ such that a WoT system can perform
various automation tasks on these ‘things’. The method being develop
in this work is a method to describe ‘things’ by their properties, as in
the following example.

S115

S116

V102

E104

B104

Figure 1: Close view of (parts of) a water management plant model with
physical tagging

Figure 1 shows some of the components of a water management
plant model used for later experiments. Various components were
tagged, as highlighted on the picture. One cannot infer from the la-
bels E104 and B104 that the corresponding devices are respectively
a heater and a temperature sensor. The labels are also independent
from contextual information like the fact both devices are mounted
on the same object (a water tank, visible in the background). Contex-
tual information is often relevant when describing the whole system
and it can also be a substitute for abstract identifiers: B104 is equiv-
alent to “the temperature sensor mounted on a water tank” for this
particular system. Combining both methods adds redundancy and
lowers the risk of misidentification of physical world entities. In Sec.
2.2.1, this mixed representation is formalized by a notation that asso-
ciates a class and properties to some identifier, as in object-oriented
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device description

S115 Valve opening control for V102

S116 Valve closing control for V102

V102 Pneumatic valve with digital control to empty the
system’s water tank

E104 Heater mounted on the system’s water tank

B104 Temperature sensor mounted on the system’s water
tank

Table 1: Description of the physically tagged components of the water man-
agement plant model of Fig. 1

programming. The thesis includes numerous examples of such “ob-
jects” throughout this thesis. An object is the shortest formal descrip-
tion one can make of a physical world entity and it often easily trans-
lates into natural language. Table 1 includes textual descriptions for
E104, B104, as well as S115, S116 and V102 which are parts of the
same pneumatic valve. We will come back to this water management
system later in Ch. 3 (Sec. 3.4.2).

The W3C has developed a Thing Description (TD) model that does
not only include properties for a ‘thing’ but also the actions that can be
performed on it and the events that relate to it [61]. This model was
mostly developed on an empirical basis and in relation to concrete im-
plementations. This thesis develops the theoretical foundations of the
TD model in order to capture the complexity of large WoT systems.
These foundations themelves rely on the concept of knowledge graph,
in which physical world entities are described by their relations to
each other in a graph. Knowledge graphs find applications on the Se-
mantic Web, which is built on top of the Resource Description Frame-
work (RDF). RDF is both a data model for Web resources and a set of
W3C standards that includes the SPARQL Protocol and RDF Query
Language (SPARQL) and the Web Ontology Language (OWL), which
we explore in more details in Ch. 2 & 3. We also revisit SPARQL in
Ch. 4.

1.2.3 An Abstraction of Web of Things Interactions

As mentioned before, the primary purpose of describing ‘things’ in
a WoT system is to drive automation in that system. In the water
management plant example, it seems intuitive that E104 and B104
be coordinated to implement e.g. a thermostat, because they relate
to the temperature of the same water tank. The basic assumption of
WoT is that there exist “proxies” for these two ‘things’ that have have
computational power and that can interact over IP. It is not required
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that every ‘thing’ has its own proxy, a single chip can be a proxy for
different ‘things’. The general idea developed in this thesis is that
an interaction between computational agents is possible if there is
a relation between the ‘things’ for which they are a proxy, like E104
and B104. If B104 were measuring the temperature of a room, it could
interact with any sensor located in the same room or in some adjacent
space.

As prerequisite to formalizing this idea, a definition of WoT sys-
tems is first introduced, as well as a simple model for the interactions
that take place between their components. This definition is based on
that of the Web. The Web can be simply defined as a browsable col-
lection of interlinked documents [60]. It is designed to be browsed by
user agents, mostly humans, via a standard software stack (a browser).
WoT represents a subset of the Web, in which documents provide sen-
sor measurements and commands and in which most agents are not
humans but computers. Computer agents in WoT can be considered
as autonomous, as they are not controlled individually by humans, and
are therefore “intelligent” agents. From this perspective, WoT systems
are a particular kind of Multi-Agent System (MAS) that uses the archi-
tecture of the Web. We can define WoT systems as follows:

web of things system Sensing and actuation system composed
of autonomous and self-describing agents exposing affordances
to possible interactions. The fulfilment of a given task by a WoT
system results from actual interactions between these agents.

A WoT system is first described by the interactions that take place
between WoT agents. An interaction can have several forms: it can
be a request sent by a client to a server followed by a response, it
can be a server-sent message to a client that had subscribed to certain
events on the server or it could even involve a message broker for
asynchronous delivery. Since agents can alternatively act as clients
and servers, the generic term of ‘servient’ is used to describe WoT
agents. An abstract model for servient interactions can be the graph
G = 〈V ,E〉 such that V is a set of servients and E a set of pairs {x,y}
such that servient x is involved in an interaction with servient y. Be-
cause client and server roles are mitigated in WoT, the edges of G are
unordered sets (as opposed to vectors which preserve order). We refer
to G as a ‘graph of interactions’. This abstraction will be developed
with examples in Ch. 3 (Sec. 3.4).

It is argued here that this simple graph model for WoT interactions
captures most of the complexity of WoT systems. On this model, one
can then base a theory that would provide the foundations for future
development of WoT systems. The thesis exposes one such theory, in
which the semantics of a WoT system is given by a transformation (a
homomorphism) between its graph of interactions and a knowledge
graph describing the ‘things’ it observes and acts upon.
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1.3 overview of the thesis

The reader will find in the following the necessary tools to get started
on reading the thesis: an outline, a summary of the scientific contri-
butions of the thesis, its scope (defined by excluding some aspects of
WoT systems that are orthogonal to the present problem statement)
and, finally, the general methodology of the thesis.

1.3.1 Outline

This thesis focuses on constructing a knowledge graph for a WoT
system, in order to analyze its graph of interactions and, by that,
its semantics. In particular, three aspects of knowledge graphs are
being considered: the vocabulary they use as defined in Web ontolo-
gies, the rules that can be defined to construct them and their serial-
ization, such that fragments of knowledge graphs can be efficiently
exchanged among WoT servients. Each aspect is developed in a dedi-
cated chapter.

In Ch. 2, existing models for IoT and WoT systems are being re-
viewed, in order to formally define in RDF and OWL terms the W3C
TD model. In this review, we are particularly interested in defining
the concept of ‘thing’ according to existing Web ontologies. In Ch. 3,
the semantics of Web ontologies is being introduced as sets of rules,
from which assertions about ‘things’ can be inferred using state-of-
the-art reasoning techniques. Finally, in Ch. 4, a compact binary se-
rialization for TD documents is being introduced, suitable for WoT
agents with constrained resources (e.g. memory, battery consump-
tion). The last chapter, Ch. 5, includes a summary of all experiments
presented in the thesis and a discussion of the foundational hypoth-
esis that the semantics of interactions on WoT can be expressed with
knowledge graphs.

1.3.2 Contributions

The main scientific contribution of this thesis is the formalization de-
veloped in Sec. 3.3, in which a graph of interactions G is labeled with
a conjunctive query formulated using a WoT-specific vocabulary. In
addition, every chapter includes more specific contributions related
to RDF: Ch. 2 introduces a Web ontology (in the OWL format) for the
W3C TD model, Ch. 3 introduces a query answering method for cer-
tain OWL ontologies and Ch. 4 formalizes the semantics of a recent
object notation for RDF, from which a straightforward compaction
method can be derived. Briefly:

1. The OWL formalization of the TD model mainly consists in a
semantic alignment of the concepts of ‘thing’ defined by the TD
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model to concepts from the Semantic Sensor Network (SSN) on-
tology: ‘system’, ‘platform’ and ‘feature of interest’. The reader
can already refer to Fig. 6 for a visualization of that alignment.
Moreover, a systematic review of IoT and WoT models and their
alignments suggests that this TD ontology is the closest seman-
tically to all existing models. In this review, the semantic “dis-
tance” between models is computed using graph metrics (Secs.
2.3.1 & 2.3.2).

2. A particularity of WoT knowledge graphs is that they contain
many “anonymous” nodes, that is, entities with no identifier
but whose existence can be indirectly inferred. There has been
little research so far on processing conjunctive queries on such
nodes. The thesis focuses on a fragment of OWL for which a
transformation procedure with polynomial complexity exists to
remove anonymous nodes (what is commonly referred to as
skolemization). Proofs for the correctness and complexity of the
procedure are given in Sec. 3.3.4. Some of the theoretical de-
tails of the rule-based formalism introduced in this thesis are
provided in Appendix A.

3. The state-of-the-art in compact RDF serialization roughly con-
sists in indexing text-based identifiers and then storing indexed
values in bitmaps, efficient for large amounts of data. However,
this range of techniques is not directly applicable to resource-
constrained servients which can only store few RDF statements.
This thesis introduces a natural serialization for RDF with con-
textualization which is a formalization of the recent JSON for
Linked Data (JSON-LD) format. Among others, JSON-LD includes
a mechansim to compact and expand RDF documents based on
a globally defined context. Unlike the state-of-the-art, there is
no need to store the index (i.e. the context) along with the in-
dexed data. In Sec. 4.4, it is showed that JSON-LD compaction
combined with binary JSON serialization performs better than
the state-of-the-art for TD documents.

Besides scientific contributions, two implementations of the tools
used for WoT experiments have been released with open-source li-
censes. Both are primarily maintained by the author of this thesis,
myself. The first program is a Thing Directory (TDir), a discovery
agent that indexes TD documents and performs various reasoning
tasks on the resulting knowledge graph, like inferring a graph of in-
teractions2. The second program is a JavaScript implementation of an
RDF store designed for micro-controllers3 (µRDF.js). All datasets and
experimental results of the thesis have also been published online4.

2 https://github.com/thingweb/thingweb-directory/

3 https://github.com/vcharpenay/uRDF.js

4 https://github.com/vcharpenay/urdf-store-exp

https://github.com/thingweb/thingweb-directory/
https://github.com/vcharpenay/uRDF.js
https://github.com/vcharpenay/urdf-store-exp
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1.3.3 Scope of the Thesis

Defining formal semantics for the interactions that take place in a
WoT system has many potential applications, which would each re-
quire a thorough evaluation. In the present work, evaluation has been
deliberately restricted to certain aspects. If we consider a WoT system
roughly goes through the four phases of (1) engineering, (2) deploy-
ment, (3) production and (4) decommissioning, we can then say that
the scope of the thesis was narrowed to the deployment phase. In-
deed, it refers to the graph of interactions of WoT systems only for
the discovery of potential interactions between servients after they are
deployed in a particular environment.

This formalism would however also have applications in the en-
gineering phase, e.g. as a way to estimate the coverage in terms of
sensing and actuation equipment that is required to perform certain
tasks. Similarly, in the production phase, graphs of interactions can
help monitor exchanges in WoT systems, detect failure and dynami-
cally adapt by updating the knowledge individual servients have of
their environment (and thus allowing new interactions to take place).
Conversely, other works in the context of WoT focus on the engineer-
ing and production phases and not on deployment or discovery. It is
the case for a range of experiments on “recipes” for WoT applications
[116] as well as works on applying the principles of Linked Data in
WoT systems [5, 72]. These works were conducted in parallel to my
own and are likely to be complementary rather than competing.

Moreover, the scope of this thesis is limited to approaches covered
by technological standards. In the first place, the definitions that were
adopted are those given by the W3C in its standardization activity
for WoT. One can argue that because of the decentralized nature of
the Web, the standardization of WoT building blocks is necessary if
its general principles are to be implemented in practice. Knowledge
graphs and ontologies are also referred to in their RDF variant and
certain logical modalities like time were deliberately left aside, as they
are not covered by RDF.

1.3.4 Methodology

The limitation in scope to standardized approaches generally influ-
enced the methodology applied to this work. Because standard-based
technologies were readily available, this thesis mostly consists in a
thorough review of existing works and their applications, evaluated
according to their level of maturity to be integrated into engineering
processes. Another motivation was also to be able to quickly provide
prototypical implementations to illustrate the benefits of WoT in an
industrial environment. As a consequence, the theory of WoT being
developed here is the result of several years of prototyping as opposed
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example description

‘temperature’ Generic concept defined in natural
language

Temperature Well-defined concept available in
the literature

Temperature Term with mapping to an IRI for a
given context (see Appendix B)

om:Temperature CURIE (see Sec. 2.2.1)

http://www.wurvoc.org/... IRI

Table 2: Typographical conventions used in this thesis to refer to ontological
concepts

to being the starting point of experimental design. Parts of this model,
like the TD ontology, are to be included in the W3C WoT framework5.
In this sense, the general methodology of this thesis differs from the
classical hypothetico-deductive approach of natural sciences.

Nonetheless, this work follows a strict mathematical formalism,
borrowed to the most part from the literature, which finds its foun-
dations in set theory and model theory. In addition to the mathemat-
ical notation that was adopted for formal logical expressions, I have
striven to follow typographic conventions to distinguish concepts ex-
pressed in natural language from their formal counterparts. Such a
distinction must indeed be made when referring to Web ontologies
as not everything can be strictly formalized in this domain, at the in-
tersection between philosophy, linguistics and computer science. The
conventions I have chosen are summarized in Table 2.

5 http://www.w3.org/ns/td (subject to changes)

http://www.wurvoc.org/vocabularies/om-1.8/Temperature
http://www.w3.org/ns/td




2
M O D E L I N G ‘ T H I N G S ’ O N T H E W E B O F T H I N G S

2.1 introduction

Philosophical writings have addressed the question of individuation
long before computers even existed. From Aristotle in ancient Greece
to Thomas Aquinas in the 13th century to modern philosophers, the
formulation of this problem has evolved continuously as new theories
of metaphysics emerge and replace old ones. Individuation can be
seen as the intellectual process of naming parts of reality as objects
of human perception [36]. If we translate the problem to the digital
space and to machine perception, it remains essentially the same: how
to model the ‘things’ that are perceived by digital sensors?

At the intersection between philosophy and computer science is the
notion of ontology, which is commonly defined as a set of concepts
and the logical relations between them, both defined in a way that
their definition can be exchanged between computational agents [45].
The computer scientist Alonzo Church introduced a formalization for
ontologies that distinguishes between an object, the name one gives to
this object and the associated concept [27]. This formalization gave
birth to object-oriented programming where concepts become classes
and names become (scoped) identifiers or symbols.

In that sense, every class diagram following the Unified Modeling
Language (UML) is an ontology. In the context of the Web, the dedi-
cated formalism is OWL, a language that has its roots in computational
logic and that goes much beyond UML in terms of expressiveness (al-
though it remains within the paradigm of object-oriented modeling).
OWL provides one with a first definition for the concept of ‘thing’
in WoT. Indeed, every object (or individual, as the result of individ-
uation) is an instance of the class owl:Thing. However, when Kevin
Ashton first spoke of an Internet of ‘things’, he had a different defi-
nition in mind. He was indeed only referring to objects that could be
“tagged” with an RFID chip, namely physical or tangible objects [1]. As
mentioned in Sec. 1.2.1, related fields of research focus on sensing and
actuating devices, which also are potential ‘things’ but this definition
still excludes intangible entities like events or human organizations,
which are yet identifiable and therefore are owl:Things.

Starting from this observation, the first step towards defining the
semantics of WoT is to formally define the concept of ‘thing’ in the
context of WoT. In other words, we must define a (Web) ontology
for WoT. This chapter presents the TD model, which is an attempt to
summarize existing works addressing this problem. We start with a

13
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review of these works after a short introduction to OWL and RDF, its
underlying data model (Sec. 2.2). Since not all of these works pro-
vide OWL-based alignments, a comparison is provided by analyzing
their respective lexicon (Sec. 2.3). This comparison allows one to for-
mally define the TD model and provide examples of WoT ‘things’
(Sec. 2.3.3). An immediate consequence of this modeling is the choice
of identifiers for ‘things’, for which brief guidelines are provided (Sec.
2.4).

2.2 related work : ontologies for the web of things

Web ontologies can have different levels of complexity, usually pro-
portional to the engineering effort required to design them. The low-
est complexity level is to define a vocabulary, i.e. a set of names des-
ignating concepts (the term ‘signature’ is also used in the literature).
Every OWL concept name is also an RDF resource. In the following,
the principles of RDF are briefly introduced and a definition for the
notion of resource is given, which will suffice to understand the re-
mainder of the chapter. Later in the thesis, we will need formal defi-
nitions for OWL to address more advanced aspects of Web ontologies
(Ch. 3).

2.2.1 Introduction to the Resource Description Framework

The architecture of the Web has two foundations: resources and hy-
perlinks, respectively the vertices and edges of a world-wide corpus
of documents [60]. Every resource on the Web is globally addressed
by an arbitrary identifier, a Uniform Resource Identifier (URI). The
specification of the Internationalized URI (IRI), which extends the
character set of identifiers to UTF-8, supersedes that of URI. We will
therefore only consider IRIs in this thesis.

Besides uniquely identifying a Web resource, an IRI also contains
all the necessary information to request a representation of that re-
source using well-known protocols. Together, resource IRIs and hy-
perlinks allow (user) agents to browse the Web as if it were a sin-
gle document. The original goal of RDF is to make hyperlink rela-
tions themselves browsable, i.e. to identify them with IRIs as well.
The motivation for RDF is to let a “Semantic” Web emerge so that
intelligent agents can dynamically discover the semantics of links
and autonomously decide whether to follow them or not, e.g. to im-
prove page indexing or perform advanced question answering [55].
Clearly, WoT provides a new use case for RDF as most WoT agents
will browse the Web without human assistance.

The core RDF data model is based on the notion of triples, which
are to be understood as logical statements (or assertions) composed
of a subject, a predicate and an object [48, 54]. Because RDF is itself
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part of the Web, all three components can be IRIs. This way, RDF
triples can be seen as conceptual links between Web resources where
the link relation type is itself described by a Web resource. The object
of a triple can also be a literal (e.g. a number or a plain string). A
set of RDF triples is called an RDF graph, from which the concept of
knowledge graph is derived. In the present writing, the two terms
will be used interchangeably.

Example 1. The following RDF graph (composed of two triples) describes a
resource of type ‘sensor’ with link to a logo for integration in graphical user
interfaces:

s1 http://example.org/sensor

p1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

o1 http://www.w3.org/ns/sosa/Sensor

s2 http://example.org/sensor

p2 http://schema.org/logo

o2 https://en.wikipedia.org/wiki/File:Siemens_AG_logo.svg

Every IRI in Ex. 1 can be dereferenced to obtain a representation
of the corresponding resource. For instance, o2 would return a vec-
tor graphic of the Siemens logo. p1, p2 and o1 are “semantic” re-
sources, that is, they are part of the vocabulary of some Web ontol-
ogy. p1 is defined by the RDF Schema, the core ontology for RDF;
p2 is defined by schema.org, an extensive ontology for anything that
may be exposed on the Web and referenced by search engines; o1
is defined by the Sensor, Observation, Sample and Actuator (SOSA)
ontology. For the sake of convenience, each vocabulary is exposed
on the Web under its own namespace. It is a common practice to
express an ontological name as a contraction of a namespace pre-
fix (e.g. rdf:, sosa:, schema:) and a local name (a human-readable
name). For instance, http://www.w3.org/ns/sosa/Sensor would be-
come sosa:Sensor. This compacted form of IRI is called a CURIE.

Web ontology vocabularies incude names of three different kinds:
class names, property names and individual names. The RDF con-
vention to distinguish them is that class names are capitalized, like
sosa:Sensor, while property names and individual names are not.
The latter two can usually be distinguished by their position in a
triple: predicates are always property names, while individual names
shall only be used as subject or object. Class names should always
appear as objects in a triple that has rdf:type as a predicate. It is
also common practice that property names start with a verb, like
sosa:hasSubSystem, to avoid ambiguity. The two property names in

http://example.org/sensor
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/ns/sosa/Sensor
http://example.org/sensor
http://schema.org/logo
https://en.wikipedia.org/wiki/File:Siemens_AG_logo.svg
http://www.w3.org/ns/sosa/Sensor
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the above example (rdf:type and schema:logo) do not follow this
convention, though.

For the sake of conciseness, RDF terms will only be referred to by
their local name in most examples of this thesis. A compact syntax is
also used to represent triples to increase readability, with two main
changes compared to the idiomatic RDF representation. First, triples
with the same subject are factorized. It is indeed common that the
subject of a sentence relates to more than one object, in natural lan-
guage as well as in formal assertions. It is the case in Ex. 1. Second,
since the rdf:type predicate is very common in RDF graphs, syntac-
tic sugar can be provided to shorten type statements. In its general
form, an RDF graph is a set of expressions, each with a single subject,
a class separated by a colon (:) and a property map within brackets
([. . . ]).

Example 2. The following expression is a syntactic variant of Ex. 1:

sensor:Sensor[logo → Siemens_AG_logo.svg].

This notation can be seen as an abstraction of different serialization
formats for RDF (among others, JSON-LD). We will come back to it in
details in Ch. 4. It is clearly inspired by object-oriented programming
but it is best to avoid mixing terminologies because of too many pol-
ysemic terms (on the term ‘object’ in the first place). The remainder
of the thesis mostly refers to classes, properties and individuals and
the RDF terminology of subject, predicate, object is avoided as far as
possible. The individuals to which properties map are simply called
values.

A Web ontology is a set of rules defined for a given vocabulary.
When an RDF graph uses a vocabulary to express logical statements
on arbitrary RDF resources, it implicitly “imports” these rules and
the sum of the two (statements and rules) form what is called a knowl-
edge base. The principles of reasoning with knowledge bases will be
developed in the next chapter but for now, we quickly fast-forward
through those definition necessary to introduce the concept of ontol-
ogy alignment, the govering principle of the present chapter.

We denote NC, NP and NI the disjoint sets of IRIs corresponding
to class names, property names and individual names, respectively.
The vocabulary defined by a knowledge base K is denoted NK and
we have NK ⊂ NC ∪NP ∪NI. It is possible to say that a Web ontology
is a particular kind of knowledge base whose vocabulary is fixed. To
determine whether a knowledge base K is logically consistent, one
approach consists in proving that an interpretation exists for K. In this
context, an interpretation I is roughly a function that maps elements
of NK to parts of some graph: class names to sets of vertices, property
names to sets of edges and individual names to single nodes. An
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interpretation I satisfies K if it satisfies certain constraints on the rules
defined in K.

On this basis, semantic alignment between two ontologies K and
K ′ can be defined as the existence of some overlap in their interpre-
tation.

Definition 1. Let K, K ′ be ontologies. We say that K semantically aligns
with K ′ if one of the following holds for all I satisfying K∪K ′:

• there exists a ∈ NK ∩NI and C ∈ NK ′ ∩NC such that aI ∈ CI

• there exists C ∈ NK ∩NC and C ′ ∈ NK ′ ∩NC such that CI ⊆ C ′I

• there exists p ∈ NK ∩NP and p ′ ∈ NK ′ ∩NP such that pI ⊆ p ′I

Intuitively, an ontology for WoT would align to every other OWL
model K related to sensing and actuation by defining the abstract
class name Thing such that CI ⊆ ThingI as per Def. 1 for every class
name C ∈ NK denoting either the subject or the object of sensing
and actuation. The remainder of this chapter will be dedicated to the
review of such ontologies (like SOSA or schema.org) in order to then
define Thing in more concrete terms.

In practice, most OWL ontologies available online include axioms
like owl:subClassOf to express alignment between terms, possibly
pointing at different vocabularies. This results in an “ontology cloud”
of interlinked OWL documents. This cloud is e.g. materialized on the
Linked Open Vocabulary (LOV) platform, a catalogue maintained by
a community [117]. We review next the fragment of the LOV cloud
that relates to WoT and the IoT.

2.2.2 The Web of Things Ontology Cloud

The LOV platform is not an exhaustive source, ontology documents
must follow certain guidelines to be published on LOV while a signifi-
cant part of the potential contributions to the state-of-the-art does not
follow these guidelines, for lack of time and technical expertise. To
bridge this gap, Gyrard et al. maintain a catalogue of IoT ontologies
and domain-specific vocabularies relevant for the IoT that are poten-
tial but incomplete contributions to LOV [49]. This catalogue, LOV for
the IoT (LOV4IoT), included 462 contributions as of September 2018

1.
“Contributions” is to be understood in a broad sense here: any formal
model expressed in RDF and mentioned in a scientific publication is
a potential contribution, even those that are not formalized in OWL
or are not available on the Web as dereferenceable resources.

The vocabularies of LOV4IoT are classified in different categories
depending on the domain they address. There are vocabularies for
e.g. food & beverages, healthcare, environmental monitoring, agricul-
ture or transport. Such ontologies do not necessarily include commu-
nication aspects or a model for computational agents. They model a

1 see https://lov4iot.appspot.com/?p=ontologies for the latest status.

https://lov4iot.appspot.com/?p=ontologies
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certain domain of application without considering the internal mecha-
nisms of the system applied in that particular domain. An application
integrates several domain-specific ontologies that must be aligned
with each other, which is typically done by aligning them to the
same upper ontology, an abstract model analogous to meta-models
in other formalisms like UML. Upper ontologies are those of interest
in the present attempt to define in OWL the abstract class Thing. In
LOV4IoT, upper ontologies with system description are classified in
the categories ‘WoT’ and ‘IoT’. For these two categories, there are 58

contributions available.
Later in this chapter, we will look at several LOV4IoT contributions

individually. At a macro-level, an analysis of the history of LOV4IoT
suggests that the research community is currently moving away from
the question of ontology engineering for WoT, as shown on Fig. 2.
21% of the contributions were not dated and therefore are not shown
on the figure but a clear trend appears: the number of contributions
quickly rose in the period 2000-2016 and has then decreased in inten-
sity for the past 2-3 years. A possible interpretation is that WoT/IoT
ontologies have reached maturity and a technology transfer occurred
from research to the industry.
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Figure 2: Evolution over time of the number of vocabularies registered in
the LOV4IoT catalogue

This interpretation is otherwise supported by the fact that several of
these ontologies have been standardized in the past years or are about
to be standardized. The most important one is the SSN ontology, first
incubated by the W3C [28] and now an official W3C recommendation
[51]. SOSA, which defines the class sosa:Sensor, is a subset of SSN
intended to be a leightweight ontology that can easily integrate with
most IoT applications. SOSA also defines the classes sosa:Observa-

tion, sosa:ObservableProperty and sosa:FeatureOfInterest. In the
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SOSA terminology, an ‘observation’ is a measurement at a given point
in time of some ‘property’ of some ‘feature of interest’. ‘Feature of
interest’ is a very generic concept covering a variety of physical world
entities. The same pattern is defined for sosa:Actuators. We come
back to these concepts later in this chapter (Sec. 2.3.3).

SSN extends SOSA in several places to provide more context about
sensor measurements, e.g. to specify system deployments and their
capabilities in normal and degraded conditions. However, SSN re-
mains an upper ontology insofar as some classes are placeholders
for future alignment with domain-specific vocabularies. For instance,
there is no definition for the concept of temperature in SSN, nor is
there a definition of a binary switch, the most common IoT devices.
SSN only includes the more abstract classes ssn:Property and ssn:-

System.
Several works on semantic interoperability and standardization in

the IoT introduce an alignment of SSN with other vocabularies, in
particular with the Smart Appliance Reference (model) (SAREF) on-
tology and the Smart Energy Aware System (SEAS) ontology [77, 87].
SAREF defines both classes saref:Temperature and saref:Binary-

Switch, as well as other terms of in the domain of home and building
automation. An alignment between SAREF and SSN would state that
saref:Temperature is a sub-class of ssn:Property and saref:Bina-

rySwitch a sub-class of ssn:System. SAREF was mostly driven by
the industry and became a standard by the European Telecommuni-
cation Standards Institute (ETSI) [111]. SAREF mixes domain-specific
and domain-independent concepts, it is therefore relevant to men-
tion it in the present review. Indirectly, SAREF also aligns with the
Ontology of Units of Measure (OM) by reusing some of its units. OM
is not a standard but it is a comprehensive and well-maintained set
of axioms.

The SEAS ontology provides both a generalization of SSN and sev-
eral specializations (e.g. for the building automation, energy and en-
vironmental domains) [78]. The ontology was designed by active con-
tributors of SSN and an alignment between the two ontologies is pro-
vided. A direct alignment between SEAS and SAREF was also pro-
posed in the literature and an official endorsement of SEAS by ETSI
is planned2.

It is also worth mentioning a recent initiative to extend schema.org
to the IoT3, although only few classes and properties have been pub-
lished so far. There are many more standardization bodies that are
currently working on reference architectures, models and protocols
for the IoT and WoT. Most of them are not included in the LOV4IoT
catalogue because they rely on other technologies than RDF. Their de-
velopment process is however similar in many respects and some of

2 https://portal.etsi.org/STF/stfs/STFHomePages/STF556

3 https://iot.schema.org/

https://portal.etsi.org/STF/stfs/STFHomePages/STF556
https://iot.schema.org/
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the specifications they produce can be considered as shared concep-
tualizations, i.e. as ontologies. We review them next.

2.2.3 Other Information Models

At the application level, most communication standards include onto-
logical definitions, although in an implicit fashion. Most standards in-
deed define an information model such that model elements directly
map onto messages accepted or not by a protocol. WoT and IoT com-
munication standards are therefore also relevant in the present study,
although their model for ‘things’ and the medium to exchange in-
formation on these ‘things’ are interdependent. This is the case e.g.
for the collection of (BLE) Generic Attributes (GATT), to expose in-
formation like automation I/O control or health measurements4. It
is also the case for the widely used protocol for BA Control Net-
work (BACnet)5 and another widely used framework to communicate
with field devices in industrial plants, the OPC Unified Architec-
ture (OPC-UA)6. Both standards define their own object model with
pre-defined object types.

Another category of standards, more specific to WoT, rely on the
same Web protocol but they also restrict the set of messages that can
be exchanged, in order to provide an integrated runtime environ-
ment that comes with features like authentication and device man-
agement. The main standardization bodies in this category are the
oneM2M foundation7, the Open Connectivity Foundation (OCF)8 and
the Open Mobile Alliance (OMA) in its set of standards on Light-
Weight Machine-to-Machine (LWM2M) communication9. All 3 stan-
dards have a distinct meta-model, against which they define schemas
for various sensor types (like ‘temperature’, ‘accelerometer’ or ‘illu-
minance’) and control interfaces (like ‘light control’, ‘on/off switch’
or ‘up/down control’).

Finally, although they are not specified alongside a protocol, some
standards are used de facto in conjunction with specific architectures.
For instance, the Electronic Device Description Language (EDDL) is
used in the configuration of Profibus and Profinet devices in industry
automation10. The standard product and service taxonomy eCl@ss11

is also used to facilitate the deployment of industrial controllers in the

4 https://www.bluetooth.com/specifications/gatt

5 http://bacnetinternational.net/

6 https://opcfoundation.org/about/opc-technologies/opc-ua/

7 http://onem2m.org/

8 https://openconnectivity.org/

9 https://www.omaspecworks.org/

10 https://www.profibus.com/download/device-integration/

11 https://www.eclass.eu/

https://www.bluetooth.com/specifications/gatt
http://bacnetinternational.net/
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://onem2m.org/
https://openconnectivity.org/
https://www.omaspecworks.org/
https://www.profibus.com/download/device-integration/
https://www.eclass.eu/
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standard owl mapping

BLE GATT -

OPC-UA -

BACnet BACowl [8]

oneM2M oneM2M Base Ontology [123], [26]

OCF [26]

IPSO/LWM2M [26]

EDDL [57]

eCl@ss eCl@ssOWL [56]

IFC ifcOWL [90]

Project Haystack HTO [21], Brick [6]

Table 3: Communication standards related to WoT with mapping of their
information model to OWL

field. The Industry Foundation Classes (IFC)12 and Project Haystack13

found similar usages in Building Automation (BA) systems.
Table 3 provides a summary. Despite the fact that most standards

are used in specific application domains, a certain overlap exists in
the ontological models they define. In the first place, they all adopt an
object model with read/write access on properties and object “meth-
ods” to execute certain tasks. For most of them, a mapping to OWL
exists.

In the case of oneM2M and ifcOWL, this mapping is included in
the specification of the model [90, 123]. The other available ontolo-
gies are experimental: eCl@ssOWL [56], EDDL mapping [57] and
the Haystack Tagging Ontology (HTO) [21] (as well as on-going ef-
forts around OPC-UA), to the exception of Brick, to which the Project
Haystack community seems to be converging [6]. A recent work on
comparing oneM2M, OCF and LWM2M in terms of semantic cover-
age also provides an indirect mapping to SSN and SAREF. Another
relevant experiment was done with Konnex, another BA standard
(also spelled KNX), although it consisted in embedding OWL decla-
rations in a KNX frame, as opposed to mapping the frame structure
of KNX to OWL [101].

All these OWL models theoretically increase interoperability across
systems. Nonetheless, only few formal alignments have been pro-
posed between them and other Web ontologies. First, an alignment be-
tween Brick and ifcOWL is indirectly available via the W3C Building
Topology Ontology (BOT), currently being developed by the W3C
community [98]. Second, the mapping from EDDL to OWL targets

12 http://www.buildingsmart-tech.org/specifications/ifc-overview

13 http://project-haystack.org/

http://www.buildingsmart-tech.org/specifications/ifc-overview
http://project-haystack.org/
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the ontology for Quantity Kinds, Units and Data Types (QUDT), refer-
enced by LOV4IoT [57]. The last alignment provided in the literature
is between the oneM2M base ontology and SAREF [111]. Despite the
absence of alignments with other standards, it is known that some of
them overlap, both in terms of upper ontologies and domain-specific
ontologies [26].

A synthesis between all the models listed in Table 3 is necessary to
be able to introduce a generic definition for WoT ‘things’ that would
take into account the agents that expose these ‘things’ using diverse
protocols. To overcome the lack of formal alignments between these
models, we must provide a comparison to LOV4IoT first, in particular
to SSN, SOSA, SAREF and SEAS. We address this issue next.

2.3 what is a ‘thing’?

We recall that the objective of the present review is to design an ontol-
ogy for WoT in order to formally define the concept of ‘thing’. We are
therefore primarily concerned with ontological alignments between
existing models, in order to select the most abstract concept that en-
compasses most if not all physical world entities that are either the
subject or the object of sensing and actuation and whose represen-
tation is being exchanged via IoT and industrial protocols (like BLE,
OPC-UA, BACnet and others).

So far, we have reviewed 58 Web ontologies and 10 other infor-
mation models that potentially align. One of the outcomes of our
review so far has been that there are too few alignments available for
the latter, despite various attempts to provide a unified OWL-based
view on these information models. There exists automatic or semi-
automatic techniques to ontology alignment, a problem extensively
studied in the literature also known as ontology matching [31]. Some
of the well-known ontology matching techniques were used here to
provide alignments between the non-RDF information models.

Web ontologies are designed to be modular such that a single on-
tology represents a consistent set of rules that are meant to be used
together in a knowledge base. For this reason, alignments shall not
be considered on a term basis but rather on a vocabulary basis. From
Def. 1, it is possible to derive a graph of alignments, which can then
be used to identify “reference” ontologies, to which most other on-
tologies align.

Definition 2. The graph G = 〈V ,E〉 is a graph of alignments for some
ontologies K1, . . .Kn if |V | = n and 〈xi, xj〉 ∈ V if and only if Ki aligns
with Kj as per Def. 1.

In the following, two graphs of alignments are analized: one that
can be constructed for non-RDF standards (Sec. 2.3.1) and another
one for the ontology cloud of LOV4IoT (Sec. 2.3.2). The comparison
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results in a "bridging" ontology for the TD model, with edges pointing
at both graphs (Sec. 2.3.3).

2.3.1 Alignments Between Non-RDF Standards

Because all standards listed in Table 3 use different formalisms, their
main model elements had first to be extracted and represented in
a simplified formalism (Fig. 3). The formalism that was chosen is a
subset of UML that only features inheritance (

4

) and composition
(

�

). The classes showed on Fig. 3 summarize only the meta-model of
each standard. All model elements that are domain-specific were dis-
carded, as was done in the review of LOV4IoT, to keep only the most
abstract ontological level (upper ontologies). All ontological models
included in these standards are much more extensive, though. As an
example, BACnet specifies 54 object types that inherit the class Object
and 38 service descriptions that inherit Service (Fig. 3c) [89]. Only the
most common services are showed here: ReadProperty and WriteProp-
erty.

Given these sets of upper level classes, we can then find seman-
tic equivalences between them. Among all ontology matching ap-
proaches, the simplest is to compare plain words and compute a syn-
tactic similarity between them (e.g. an edit distance) [31]. For instance,
we can see a class Object on four UML diagrams and Property on five
of them (which is a mere consequence of the ubiquity of objects in
computing). However, classes with the same name may have differ-
ent meanings. It is the case for two of them: Resource and Service.
A LWM2M resource is a Web resource while an IFC resource is most
likely a “human resource” or some construction equipment. Similarly,
a BACnet service is provided by a machine while in eCl@ss, it is to
be understood as a service provided by a company.

To find relations between classes, all classes were mapped to sets of
synonyms in WordNet, a lexical database in which plain words map
to one or more such sets corresponding each to a given “sense” [33].
WordNet also provides semantic relations between senses that have
correspondance with the present formalism: hypernymy (inheritance)
and meronymy (composition). The mapping from UML to WordNet
was defined such that the relations in either domain do not contradict
(a form of structural ontology matching). Figure 4 shows the semantic
equivalences that were found across standards, i.e. classes that map
to the same sense in WordNet.

More advanced ontology matching techniques exist and the graph
of alignments presented on Fig. 4 should not be interpreted as ex-
haustive but rather as “minimal”. For instance, there is a certain over-
lap between the LWM2M class Execute and the class Method, defined
among others by EDDL, and yet there is no edge between the two
vocabularies in the graph. In fact, the graph only includes symmetric
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Figure 3: Main concepts from the information model of the WoT-related
standards of Table 3 (UML notation)
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LWM2M

OCF
oneM2M

Project Haystack

BACnet

IFC

eCl@ss
OPC-UA

EDDL

BLE GATT

Figure 4: Graph of alignments constructed from lexical equivalences be-
tween the concepts represented on Fig. 3, aggregated per standard

equivalence relations, hence an undirected graph, although a graph
of alignments may also have directed edges like between Execute and
Method. Despite this limitation, we can still observe a significant onto-
logical overlap between standards, which can be quantified by means
of graph metrics: all standards align to at least two other standards
and to 6.8 in average14 (minimum and average vertex degree); align-
ments in the graph represent 76% of all alignments if the graph were
complete (graph density) and the longest path between two standards
is of size 3 (graph diameter).

Given a high density and a high vertex degrees in the graph of
alignments one obtains, it is possible to identify the most represen-
tative standard(s) to use as a reference for formal alignments. If we
take the maximum vertex degree as a measure of “representativity”
or centrality, BACnet seems to be the best candidate (degree of 12).
However, a more accurate measure would be the farness of each ver-
tex based on the idea that the closer a vertex is to other vertices, the
more central it is. Farness, the reciprocal to closeness, is computed as
the average size of all paths from a given vertex to all other vertices
in the graph. The standard with the lowest farness is oneM2M (far-
ness of 11), followed by BACnet and IFC. Statistics for all vertices are
reported in Table 4.

14 including multiple edges connecting the same vertices.
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standard degree farness

BLE GATT 7 1.6

OPC-UA 6 1.4

BACnet 12 1.2

oneM2M 8 1.1

OCF 3 1.7

LWM2M 6 1.5

EDDL 7 1.3

eCl@ss 7 1.5

IFC 8 1.2

Project Haystack 3 1.7

Table 4: Statistics on the graph of Fig. 4 with respect to vertices (WoT-related
standards)

The oneM2M ontological model for WoT devices has the three
classes Property, Action and Event (Fig. 3d). Interestingly, among the
standards we have reviewed, it is the closest to the original W3C sub-
mission for a generic “WoT Thing Model”15. This submission, which
initially used the term ‘subscription’ instead of ‘event’, developed into
a versatile model for WoT that uses exactly these three classes, while
oneM2M’s DataPoint is subsumed by the W3C model’s Property class
[61]. Arguably, this systematic approach to semantic alignment based
on graph metrics formalizes the more intuitive approach of the W3C
WoT community to develop its model, also known as the TD model.
The present analysis guarantee by no means that this ternary pattern
with Property, Action and Event is the only possible model for WoT
but it guarantees at least that it is a correct one, in the sense that all
WoT and IoT standards can semantically align to it. An alternative ap-
proach that would also be correct is to adopt the more classical object
models of BACnet or IFC.

By showing the centrality of oneM2M, one indirectly shows the cen-
trality of the W3C TD model as well, assuming that lexical alignments
in WordNet can translate in the pure semantic domain. However, if
this (simple) TD model is a good basis for a TD ontology, it does not
make for an ontology alone. It defines indeed the concept of ‘thing’
in a very broad sense, in no relation to other concepts [64]:

thing an abstraction of a physical or virtual entity whose metadata
and interfaces are described by a WoT Thing Description.

In other words, a ‘thing’ is anything that has a TD document, i.e.
a formal description of itself accessible on the Web. This definition is

15 https://www.w3.org/Submission/wot-model/

https://www.w3.org/Submission/wot-model/
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close to that of owl:Thing as it does not restrict to sensing or actua-
tion. To refine this definition, one should provide further alignments
between the TD model and other Web ontologies like SSN, SOSA,
SAREF and SEAS, which have already been identified as emerging
references for WoT (Sec. 2.3.2). In the following, more insights are
given on LOV4IoT by providing the same analysis as for non-RDF
standards on the whole LOV4IoT ontology cloud.

2.3.2 Alignments in the Web of Things Ontology Cloud

Unlike the simplified UML models that was presented in the last
section, LOV4IoT ontologies themselves provide alignments to other
ontologies. These alignments go beyond the strict equivalence of last
section, as formalized in Def. 1. For instance, the original LOV plat-
form distinguishes between five types of alignments other than equiv-
alence: import, extension, specialization, generalization and disjunc-
tion [117]. In the scope of this thesis, it suffices to know that align-
ments can be automatically extracted from OWL documents on a
purely syntactic level. A graph of alignments for LOV4IoT can be
constructed on this basis, similar to the one that was presented in
last section. An earlier graph of alignments for LOV4IoT was already
published in 2016 but the present version takes into account changes
to the LOV4IoT catalogue since then [24].

Web ontology documents can import other documents that are not
necessarily referenced by LOV4IoT. From the 58 contributions in the
categories of ‘IoT’ and ‘WoT’, 78 documents were crawled from 42

contributions. Missing documents were either not made public or
could not be parsed properly. Some of the crawled documents also in-
cluded alignments with other ontologies without explicitely import-
ing them. These were also included in the graph, for a total of 85

documents (each in its own namespace) with 285 alignments. Figure
5 shows the final result16.

If we first consider this graph as indirected, the same graph metrics
as for non-RDF standards can be reused (Fig. 4). In comparison, it is
much more sparse: its density is of 10%, its average degree is 3.7 and
it has a diameter of 7 (if considered as undirected). Then, when we
include edge directions, what this graph highlights is the dominance
of SSN as a reference ontology in most contributions. Indeed, it has
a much higher in-degree than any other ontology (27 directed edges
point to it, twice as much as 95% of the vertices) and it also has by
far the lowest farness value. Since the graph is directed, one can also
consider PageRank as a measure of popularity among ontologies [16].
Again, SSN stands out as the vertex with the highest PageRank.

16 for clarity, related ontology modules have been grouped and self links have been
removed.
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Figure 5: Graph of alignments extracted from Web ontology alignments de-
clared within LOV4IoT
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ontology in-degree farness pagerank

SSNX 27 1.875 0.039067

DUL 20 2.167 0.023299

M3 13 2.23 0.022743

SOSA 8 2.938 0.006796

DogOnt 8 2.417 0.024721

QU 7 2.604 0.013021

MSM 6 2.667 0.008613

FOAF 6 3.021 0.015887

SSN 6 3.75 0.005725

SPITFIRE 5 2.375 0.009752

IoT-O 5 2.5 0.013867

SAN 5 2.625 0.00999

Vital 5 2.708 0.015621

OWL-S 5 3.542 0.017288

SWEET 5 3.792 0.005171

Table 5: Statistics on the graph of Fig. 5 for the 15 vertices with the highest
in-degree; tampering parameter of PageRank p = 0.85

Statistics for LOV4IoT are reported in Table 5 for the 15 vertices
with the highest in-degree. LOV4IoT does not guarantee that the pro-
vided semantic alignments are consistent but this pattern we observe
on all three metrics suggests that SSN is good enough to be used
as a basis for alignment. The table also shows the importance of
Dolce+DnS Ultralite (DUL), an upper ontology with a much broader
scope than SSN. In its original version (SSNX), SSN even aligns to
DUL. It is also worth noting that most contributions align to SSNX
and not to the final W3C standard. The former was incubated by the
W3C and did not significantly change throughout standardization,
though.

The other ontologies listed in Table 5 cover various domains: the
Machine-to-Machine Measurement (M3) ontology and the IoT Ontol-
ogy (IoT-O) provide a generic IoT model [50, 107], DogOnt was the
first extensive research project for home automation and domotics
[11], the ontology for Quantity and Units (QU), a subset of QUDT,
and the Semantic Web Earth and Environment Terminology (SWEET)
ontology cover physical quantities and their units of measure [96,
97], the Minimal Service Model (MSM) and the OWL for Web Ser-
vices (OWL-S) are used to annotate Web services [85, 91], the Friend
Of A Friend (FOAF) ontology for social networks is one of the first on-
tologies on the Web [15], SPITFIRE and Vital are applications-specific
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models [63, 93] (we will come back to SPITFIRE in Ch. 4) and finally,
the Semantic Actuator Network (SAN) is a translation of SSNX to ac-
tuators, although it is now subsumed by the more recent SSN [107].

From this list, we can already see overlaps in terms of domain cover-
age. In particular, LOV4IoT includes redundancies for physical quan-
tities and units and Web service descriptions. In addition to QUDT
and SWEET, some ontologies also reference OM and an OWL vari-
ant of the Unified Code for Units of Measure (UCUM). Moreover, Do-
gOnt and SAREF redefine some quantity kinds to suit their own need,
which leads to many implicit equivalence relations between classes.
Any of QUDT, SWEET and OM could become a reference as they all
are extensive and well-maintained ontologies.

Regarding Web service descriptions, there are redundant concep-
tualizations between OWL-S and the Web Service Modeling Ontol-
ogy (WSMO), referenced by IoT-O [32]. Attemps to capture the inter-
section of both formalisms like MSM seem however to fail to become
a reference. In addition, none of these ontology fully captures the
semantics of RESTful Web services, which are an important part of
WoT [73]. RESTfulness is indeed the foundation of frameworks like
oneM2M, OCF and LWM2M.

We can conclude this analysis of LOV4IoT in two points: first, an
alignment with SSN will capture most of the concepts defined in the
WoT and IoT research community and, second, a choice is to be made
on what ontologies to use to model quantity kinds (along with their
units of measure) and Web services exposed by WoT agents. For these
two aspects, SSN only defines (abstract) placeholder classes: Property
and Procedure. Aligning the W3C TD model with SSN would bridge
non-RDF communication standards and LOV4IoT: an alignment is
presented in the following.

2.3.3 The Thing Description Model

The W3C TD Model is a simple model close to that of oneM2M [61].
Recall the definition for the class Thing (Sec. 2.3.1): a ‘thing’ is any-
thing described by a TD document. A TD document is in fact a col-
lection of affordances, that is, of hyperlinks a WoT agent can follow
to access sensor and actuator data. These affordances, materialized
by the class InteractionAffordance, expose the interaction endpoints of
the servient managing this data (another WoT agent). They are of
three kinds: ‘read/write property’ affordances (Property), ‘invoke ac-
tion’ affordances (Action) and ‘subscribe to event’ affordances (Event).
They are analogous to object properties, methods and event listen-
ers in object-oriented programming. A definition of each concept is
provided in the following, derived from the W3C definitions:

interaction affordance Information entity providing the nec-
essary knowledge to interact with the servient exposing it. Ev-
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ery interaction affordance is associated to a ‘form’ (similar to a
Web form).

property (read/write affordance) Interaction affordance to
read and/or write some property of a ‘thing’ characterizing its
internal state. The state of a ‘thing’ may not be fully character-
ized by its properties (hidden state).

action (invoke affordance) Interaction affordance to invoke a
procedure (or action) to act directly or indirectly on the internal
state of a ‘thing’. An action may also be a pure function (no state
change). The duration of an invoked action may be much longer
than the duration of the invokation itself, in which case the af-
fordance should include the necessary knowledge to monitor
the invoked action.

event (subscribe affordance) Interaction affordance to listen
(or subscribe) to an event thay may occur once or repeatedly and
to cancel that subscription. An event may represent a change in
the internal state of a ‘thing’.

These definitions adopt a “systemic” view on ‘things’ where the
concept of ‘thing’ conflates with that of ‘servient’. It is indeed quite
natural to consider that physical world objects have a digital repre-
sentation only if some system can observe and act on their properties.
In fact, oneM2M adopts a similar definition for ‘thing’ by defining the
class Device as a sub-class of Thing in its base ontology. However, it is
sometimes beneficial to hide a system from external servients and di-
rectly expose a representation of some physical world entity, in which
case the entity is a ‘thing’ itself. Among others, this extension of the
definition of ‘thing’ is consistent with Kevin Ashton’s coinage of the
term ‘IoT’: when a manufactured object is added an RFID tag, there
is often no need to semantically model the tag itself but rather the
object17.

A formal alignment between TD classes and SSN can now be in-
troduced. As every servient can be considered as a system, align-
ing Thing with System is straightforward. As per last remark, Thing
should also align to Platform, a class designating anything hosting
a system, like a manufactured product hosting an RFID tag. Finally,
because of the structural similarity, a Thing can align with the class
FeatureOfInterest, which designates any physical world object with
observable and actuatable properties. Some Systems are themselves
instances of FeatureOfInterest, in particular when they have the ability
to expose their own internal state as properties. The OWL formaliza-
tion of this alignment is presented on Fig. 6, using the Visual notation
for OWL (VOWL) [81].

With this formalization, we part from the ambiguity between owl:-

Thing and td:Thing. If we consider the union of System, Platform and

17 we reported this observation to the W3C WoT working group, which adopted the
extension being exposed here of the definition of ‘thing’.
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Figure 6: Main concepts of the TD ontology with alignment to SOSA & SSN
(VOWL notation); label colors encode namespaces (purple → TD,
blue→ SOSA, red→ SSN)
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FeatureOfInterest as exclusive, it then follows that a Property or a Proce-
dure cannot be a td:Thing while it is still an owl:Thing. As an attempt
to provide a less ambiguous synonym for the former, the term tangi-
ble object may as well be a good fit. By opposition, it is anything that
is not Intangible, as defined by schema.org. The class PhysicalObject,
defined in the Dublin Core ontology18, shares some aspects with the
present definition. Dublin Core is one of the most widely used Web
ontologies.

Given this alignment between TD and SSN, examples of ‘things’can
be provided, either by looking at instances of one of the three SSN
classes or by looking at their sub-classes in LOV4IoT. The W3C SSN
specification provides numerous examples19, according to which the
following entities are potential instances of Thing20:

• sensors & actuators:

– an atmospheric pressure sensor
– a temperature and humidity probe
– an energy consumption meter
– a window closer
– a laser range finder
– a seismograph
– a wind sensor

• other computational or electronic devices:

– an iPhone
– a Java SunSpot device
– a printed circuit board
– a LoRa communication device

• physics- and biology-related entities:

– the atmosphere of Earth
– a tree
– Earth
– the Antarctic ice sheet
– air in the area of the Metropole Lyon

• manufactured items:

– a window

• places:

– the Coal Oil Point reserve
– a room

Among manufactured items, one can also think of more complex
machinary constructed as an assembly of simpler parts. The follow-

18 http://dublincore.org/

19 https://www.w3.org/TR/vocab-ssn/#examples

20 the classification introduce here is for the mere convenience of the reader, it does not
aim at exhaustivity nor is it a strict conceptualization.

http://dublincore.org/
https://www.w3.org/TR/vocab-ssn/#examples


34 modeling ‘things’ on the web of things

ing entities also present in the SSN examples shall not be instances of
Thing:

• a temperature
• a speed
• the Metropole Lyon (as a human organization, not a place)

If we look at classes in LOV4IoT and other standards, we can ob-
serve that most examples have a correspondance. For instance, the
SAREF class Device has the sub-classes TemperatureSensor and Ener-
gyMeter. It is possible to construct a class for any kind of sensor and
actuator by using e.g. the classes Pressure, Humidity, Speed or Distance
defined both in OM and QUDT. Most physics-related entities have a
corresponding class in SWEET. For places, schema.org provides the
class Place and WGS84, a minimal ontology to specify geo-locations
also provides the class SpatialThing. BOT, ifcOWL and Brick have an
abstraction for rooms, windows and other notions related to build-
ings (Space, Element). Finally, eCl@ssOWL can be used to refer to
manufactured items. In Ch. 1, we had a look at yet other examples of
‘things’. It is now possible to provide a complete RDF representation
of these ‘things’ on the basis of LOV4IoT definitions.

Example 3. The water management plant model we saw in the beginning
of the thesis (Fig. 1) includes the ‘things’ e104, b104, v102, s115 and s116,
which can be described as follows (using eCl@ssOWL, OM and SOSA):

temp:Temperature.

level:Height.

tank:WaterTank[hasProperty → temp, hasProperty → level].

e104:Heater[isHostedBy → tank, actsOnProperty → temp].

b104:TemperatureSensor[isHostedBy → tank, observes → temp].

v102:PneumaticValve[

actsOnProperty → level,

hasSubSystem → s115:FloatSwitch,

hasSubSystem → s116:FloatSwitch

].

Example 4. This thesis was introduced with an anecdote on Stuxnet. Here
is an RDF representation of the devices that were targeted by the Stuxnet
program (using eCl@ssOWL, WGS84 and SOSA), for i ∈ [1, 6] and j ∈
[1, 64] :
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plant:System[

hasSubSystem → cascadei:System[

hasSubSystem → plci,j:FrequencyConverter[

isHostedBy → centrifugei,j:Centrifuge

]

].

].

In the remainder of the thesis, the subset of the ontologies cited
in this chapter that align with TD via SSN will be referred to as the
“WoT ontology cloud”. In this ontology cloud, OM was chosen over
QUDT as reference for physical quantities and units, given that it
directly aligns with SAREF. This cloud does not include any ontol-
ogy designed for Web service description, given that interaction af-
fordances and the associated Form class already play that role. The
complete list is provided in Appendix B.

2.4 note on using web identifiers for ‘things’

One immediate issue to address after giving a definition for ‘things’
is to find an identification scheme for all ‘things’ on the Web. Indeed,
since the definition introduced here covers not only computational
systems but also physical platforms and features of interest, it is not
enough to rely on network addressing mechanisms, e.g. at the IP
level, to identify them. To give ‘things’ a Web presence, they must be
identified with an IRI. The relevant question here is therefore to find
URI schemes are appropriate for that purpose.

As a matter of fact, the question of identification on the Web has
regularly been the subject of discussions since the creation of the
World Wide Web21. At the time the idea of a Semantic Web emerged,
refinement in the definition of an IRI was required: any physical
world entity could then be given an IRI, at which an RDF descrip-
tion would be exposed. Solutions to the question of identity on the
Web even anticipated the idea of extending the Web to sensors and
actuators [95].

It quickly became clear that a physical world entity and a Web
resource providing a representation for it had to have distinct iden-
tifiers. As an example, the Wikipedia page about Munich is not Mu-
nich itself. The former has e.g. a creation date but no geo-location (as
a document) and, conversely, the latter has no creation date but it has
a geo-location (as a place). In WoT, a single ‘thing’ may be described

21 the outcomes of a WWW workshop named Identity, Reference and the Web in 2006

served as a starting point for this section. See http://www.ibiblio.org/hhalpin/

irw2006/.

http://www.ibiblio.org/hhalpin/irw2006/
http://www.ibiblio.org/hhalpin/irw2006/
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by two distinct TD documents, served by different servients or even
by “proxy” servers that are not themselves WoT agents. If all TD
documents must have their own IRI to be dereferenceable, the IRI of
the ‘thing’ must be location-independent. One pattern that emerged
around (Semantic) Web resources involves three components: an ’iden-
tifier’, the ’resource’ and the ’entity’ [37]. This pattern, called IRE,
was the basis for an initial design of a WoT ontology that differen-
tiates between the classes Thing and ThingDescription [24]. As this
classification suggests, the ‘thing’ is the entity while the correspond-
ing TD document is the resource. The TD document, which is ex-
posed by a servient, must have a dereferenceable URL, which is then
the IRE identifier. In fact, the latter rather plays the role of a "lo-
cator" for Web browsers to download and process the underlying
resource. for an illustration of IRE for a ‘thing’. On this example,
the micro-controller chip exposes a TD document describing itself
at coap://example.org/temp. A Web browser can browse to this lo-
cation and process the document, as shown on the screenshot. How-
ever, it is transparent to the browser what IRI was used to identify
the physical chip itself (in this case, urn:example:thing). If the IRE
pattern provides a clean separation between the Web resource and
the physical world entity, it does not directly address the question of
identifying the entity itself.

Official guidelines developed within the W3C exist for the naming
of physical world entities that still allow an agent to get a represen-
tation of these entities [105]. The two suggested approaches rely on
HTTP IRIs, either by using an IRI fragment to identify the entity (such
that an HTTP request will still succeed) or by using HTTP redirection
to redirect from the entity IRI to another IRI identifying a Web re-
source, like a TD document for some ‘thing’. In the context of WoT,
these approaches come with numerous issues with respect to scala-
bility, security and lifecycle management, given the high number of
‘things’ a WoT system may deal with. Among others, validating the
content of a TD document would require to communicate with poten-
tially untrusted third-party servers (that either serve base resources
or perform redirection).

An alternative approach would be to use reserved URI schemes
for non-dereferenceable identifiers, like urn: for a Uniform Resource
Namespace (URN). A list of URI schemes and URN namespaces com-
patible with WoT are provided in Tables 6 & 7. Only a subset of possi-
ble schemes22 and namespaces23 were considered here, namely those
officially registered by the International Assigned Numbers Author-
ity (IANA), that manages Internet domain names. This list is not ex-
haustive; to give one more example, one could think of mailto: to

22 https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

23 https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml

coap://example.org/temp
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
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coap://example.org/temp Identifier

Resource

Entity

Figure 7: Illustration of the Identifier-Resource-Entity pattern

coap://example.org/temp
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uri scheme example

URN urn:example:thing

Named info. ni:///sha-256;f4OxZX_x_FO5Lc. . .

Information info:example/thing

Distributed id. did:example:123456789abcdefghi

IoT discovery iotdisco:NAME=thing;MAN=example.org

Tag tag:example_thing

Ext. resource id. xri://example.com/(urn:example:thing)

Table 6: List of URI schemes suitable to identify ‘things’ (not exhaustive)

urn namespace example

Electronic product code urn:epc:id:sgtin:900100.0003. . .

Universally unique id. urn:uuid:f81d4fae-7dec-11d0. . .

Device id. urn:dev:mac:0024befffe804ff

Table 7: List of URN namespaces suitable to identify ‘things’ (not exhaus-
tive)

identify humans (who are potential Platforms and therefore potential
Things).

At first sight, non-dereferenceable IRIs may have the shortcoming
not to be self-contained: the IRI alone is not enough to retrieve infor-
mation about the resource it identifies, which goes against the core
principles of RDF. To that remark, one can first oppose that certain
URI schemes or URN namespaces specify well-known online cata-
logues such that IRIs may be indirectly dereferenced. It is the case
e.g. for the International Standard Book Number (ISBN) and Global
Trade Identification Number (GTIN) standards. Second, in the partic-
ular context of WoT, it is very likely that servients obtain IRIs for
physical world entities only via TD documents, which must be re-
trieved before any interaction can take place. There should therefore
be a dereferenceable resource IRI associated to every ‘thing’ entity on
WoT, as per the IRE pattern. In addition, the W3C WoT specification
states that all TD documents must provide links to Web resources for
all interaction affordances.

2.5 summary

A first effort in defining semantics for WoT was to identify what vo-
cabulary to use to describe WoT servients and their environment in a
knowledge graph. To this end, 58 Web ontologies referenced by the
LOV4IoT catalogue were reviewed. Most contributions to LOV4IoT
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come from a community of researcher but some notable ontologies
are maintained (or will be) by standardization bodies: SOSA, SSN,
SAREF and SEAS. The chapter also includes a review of 10 standards
not based on RDF, like BACnet and oneM2M. Most of these standards
have been aligned to RDF, although not in a unified manner, which
prevents a direct comparison with LOV4IoT.

Two of the models that were reviewed are my own contributions:
HTO [21] and the RDF integration of oneM2M with OCF and LWM2M
[26]. However, the objective here is not to compare models with each
other but rather to find possible alignments, in order then to provide
a definition for the concept of ‘thing’ that would subsume all these
models. LOV4IoT and the 10 non-RDF models that were reviewed
have then been compared in terms of graphs of alignments, in which
edges represent alignments between two models. A graph was first
built for the non-RDF models by manually finding lexical relations be-
tween their main concepts. The node with the highest centrality value
in this graph is oneM2M, which turns out to be similar to the TD
model developed by the W3C (although other object-oriented mod-
els like that of BACnet would also have been suitable). The same
operation was performed for LOV4IoT, in which SSN (another W3C
standard) is unambiguously the most central node. This work signifi-
cantly extends an earlier analysis, by myself, of LOV4IoT [24].

It follows from these conclusions that an alignment between the TD
model and SSN would make for a generic model for ‘things’ which
can theoretically align to all ontological models that exist in the lit-
erature. Consequently, an alignment in wich the class Thing is the
union of the SSN concepts of System, Platform and FeatureOfInterest
was presented. The latter concepts are different insofar as Systems
are the “active” subject in a measurement or actuation process while
FeatureOfInterests and Platform are “passive” objects, hence the fur-
ther abstraction of all these entities being Things involved in some
cyber-physical system. A number of examples of Things based on
this alignment can be found in this chapter, like in Exs. 3 & 4.

Because not only computational devices are included in the def-
inition but any tangible entity like manufactured items and places,
one issue to address is the identification on the Web of these entities.
Short guidelines were provided on what URI schemes to use to refer
to such entities. These guidelines do not mention in which context
to use these identification schemes and, in fact, there are numerous
examples of ‘things’ for which no obvious choice exists. In practice,
it is likely that not all entities relevant in a WoT system have an IRI
that can be shared among WoT servients. We must therefore also take
“anonymous” entities into account, whose existence can be stated but
that cannot be fully identified. Next section formally introduces se-
mantics for WoT, with particular care given to these anonymous enti-
ties.





3
R E A S O N I N G W I T H T H I N G D E S C R I P T I O N S

3.1 introduction

In the general introduction to the thesis, what was considered is the
question of identifying physical world objects (Sec. 1.2.2). Most ap-
proaches to this problem in the IoT consist in providing methods for
digitally “tagging” physical world objects with electronic chips. We
have already seen examples of relevant technologies in that respect:
RFID via Near-Field Communication (NFC), Zigbee, BLE. These tech-
nologies provide short-range communication protocols to efficiently
expose few bytes of data at an unprecedented scale. As a result, elec-
tronic chips have become the successor to bar codes, to be used to
not only identify consumer goods but all sorts of ‘things’. Alternative
technologies have also been used for that purpose: in BA commission-
ing, an interesting practice to identify lighting devices has consisted
in encoding byte sequences as light pulses at a frequency that is in-
visible to humans but that can be captured by camera-equipped ter-
minals.

What these approaches have in common is that they specify a unidi-
rectional transformation from the physical world to the digital space.
If the target of this transformation is a set of IRIs as described in Sec.
2.4, then physical world objects immediately get a Web presence. The
term Physical Web is sometimes used to refer to the result of this
transformation1. However, a collection of IRIs is arguably not enough
to make a “web” of Things. Tagging cannot provide links between
resources, e.g. between a temperature sensor and the water tank on
which it is mounted (like b104 and tank in Ex. 3) or between a radiator
and the room in which it is located. These links are contextual, they
refer to how system components were deployed rather than to their
own properties.

In Ch. 2, an object-oriented formulation of logical assertions was
introduced, grounded in RDF, by means of which one can describe
‘things’ and their properties. In the generic TD model, ‘things’ are first
described in terms of affordances to observe or act upon their prop-
erties. As WoT systems are defined in the thesis (Sec. 1.2.3), servients
follow these affordances exposed by other servients to perform given
automation tasks. However, in the general case, affordances alone do
not suffice: not all servients on the Web must read the temperature
exposed by e104, only those also mounted on tank. To find possible in-
teractions in a WoT system, contextual information is also necessary.

1 https://google.github.io/physical-web/
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This chapter develops a semantic framework for WoT based on col-
lections of TD documents that embed this kind of information. The
core principle of this framework is the following: the relations that
exist between ‘things’ in a collection of TD documents, i.e. a knowl-
edge graph, determine the interactions that can take place between
servients exposing affordances for these ‘things’. However, relations
between ‘things’ are not necessarily explicit. They sometimes follow
from other assertions in TD documents. For instance, if a radiator
heats some room, it also heats adjacent rooms if their interface is per-
meable to air. Similarly, the water level of tank is acted upon by any
valve that belongs to the same network of tanks and pipes (like v102).
The two examples above are generalities often referred to as domain
knowledge. Web ontologies are likely to contain domain knowledge,
encoded in the form of rules. It is the case for several ontologies of
the WoT ontology cloud of last chapter, like ifcOWL and BOT in the
BA domain.

Rules found in Web ontologies can then be processed in a reason-
ing framework to extend the knowledge graph composed of TD docu-
ments. To extend a knowledge graph means to infer either new edges
or new vertices. As we will see in a review of the state-of-th-art, most
of the computational logic literature includes works that consider the
simpler case of inferring edges only. However, in the context of WoT,
it is more realistic to also allow for the inference of new vertices, like
properties of a physical body or parts of an industrial system. The lat-
ter is referred to as existential reasoning. Indeed, it is only possible to
infer “anonymous” vertices which simply account for the existence of
some physical world entities, without identifying them with an IRI.

This chapter starts with a review of the state-or-the-art in existen-
tial reasoning with Web ontologies (Sec. 3.2). Some of the techniques
found in the literature are then extended to discover potential inter-
actions in a WoT system, from which general semantics for WoT can
be derived (Sec. 3.3). This approach was tested on two different use
cases, in the BA domain with a dataset provided by Intel labs (Sec.
3.4.1) and in the domain of industry automation, on the water treat-
ment plant model introduced in an earlier chapter (Sec. 3.4.2).

3.2 related work : existential reasoning

Broadly speaking, reasoning is the process of drawing conclusions
from certain knowledge [79]. Reasoning is not a particular problem-
solving or decision-making task but rather a tool to complete such
tasks. In WoT, reasoning can help agents build a consistent model
of the physical world, either by validating sensor observations or by
inferring high-level statements from the discrete observations they
make of their environment. In the present case, reasoning can also
make relations between ‘things’ explicit to drive servient interactions.
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In computational logic, every reasoning task can be reduced to the
problem of entailment of a assertion (or an axiom) α by a set of as-
sertions and rules (a knowledge base) K. The notation K |= α ex-
presses that K entails α. A WoT knowledge base would typically in-
clude axioms provided by some TD document for specific ‘things’,
as well as generic knowledge about the physical world provided by
Web ontologies. As mentioned before, the reasoning task of interest
in WoT is that of existential reasoning. The two main existential rea-
soning techniques in use in the Semantic Web are being reviewed in
the following: RDF graph canonicalization (Sec. 3.2.1) and existential
reasoning with Web ontologies (Sec. 3.2.2). We then move on to the
non-standard reasoning tasks of query answering and abduction (Sec.
3.2.3).

3.2.1 RDF Graph Canonicalization

The RDF data model includes the notion of blank node. According to
the RDF 1.1 Semantics specification document [54]:

Blank nodes are treated as simply indicating the exis-
tence of a thing, without using an IRI to identify any par-
ticular thing.

In other words, it is possible to provide axioms about unknown
physical-world entities using blank nodes. The RDF simple seman-
tics provides a means to compute equivalences between blank nodes
and other entities, which is a form of existential reasoning. These
equivalences are established by computing a canonical form GC for
an RDF graph G such that GC |= G and all blank nodes in G are re-
placed by “fresh” IRIs (not present in G) called Skolem constants. The
procedure of merging equivalent nodes under the same IRI is called
leaning.

An algorithm based on node coloring with graph leaning has re-
cently been developed for canonicalization, [58, 59]. The following
example briefly illustrates its principle.

Example 5. Consider the following description of two radiators in room
31.638 of the Siemens Legoland campus, expressed in terms of BOT classes
and properties:

legoland:Site[

hasSpace → 31.638:Space[

containsElement → :Radiator,

containsElement → :Radiator

]

].
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Note that two individuals have a class (Radiator) but no identifier:
they are blank nodes. Node coloring consists first in assigning an
arbitrary label (a color) to every blank node in the graph and then
blending these colors according to the neighborhood of each node in
terms of classes and properties. Since both nodes describing a radia-
tor have the same neighborhood, they will eventually be merged into
a single node during canonicalization. Indeed, the existence of two
radiators necessary implies the existence of one radiator; blank nodes
do not carry any notion of cardinality.

One way to distinguish between the two radiators is to precise on
which wall they are mounted (among other kinds of discriminative
features).

Example 6. Let us update Ex. 5 with South and East walls.

legoland:Site[

hasSpace → 31.638:Space[

containsElement → :Wall[

hasOrientation → south,

hasSubElement → :Radiator

],

containsElement → :Wall[

hasOrientation → east,

hasSubElement → :Radiator

]

]

].

Given the information that the two radiators are mounted on walls
with different orientations (south, east), node coloring will output dif-
ferent colors, from which one can conclude that they are indeed dis-
tinct entities.

In practice, RDF graph canonicalization is a fragile reasoning frame-
work. Adding a property to a blank node will have effects on all con-
nected blank nodes in graph G. Moreover, node coloring does not
include any kind of background knowledge. For instance, if we have
31.638[containsElement→ :Wall[ hasSubElement→ :Radiator]], then, tran-
sitively, it is also true that 31.638[containsElement→ :Radiator], accord-
ing to a rule formalized in BOT. If such implicit statements from G

are made explicit in G ′, then we have the undesired property that
G ′C 6= GC. Next, we consider existential reasoning in the presence of
logical rules, as provided by Web ontologies.
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3.2.2 Reasoning with Web ontologies

3.2.2.1 Description Logics

As already mentioned in Ch. 2, the standard language for Web ontolo-
gies is OWL. Its theoretical foundations are Description Logics (DLs),
a family of logic formalisms developed in parallel to classical First-
Order Logic (FOL). The following section introduces formal defini-
tions for DL knowledge bases and develops the interplay of DLs with
FOL and logic programming. Although the DL literature has devel-
oped its own terminology, slightly different from that of OWL2, OWL
terms will be retained throughout this chapter.

In all definitions, NC, NP and NI respectively denote a set of class
names, property names and individual names (all entity names are
IRIs) and V denotes a set of first-order variables. A DL knowledge
base designed for existential reasoning can now be formally defined.

Definition 3. [69] Let t, t ′1 . . . t
′
n ∈ V ∪ NI, let p1 . . . pn ∈ NP and

C, C ′1 . . .C
′
k ∈ NC ∪ {>,⊥}. A DL expression is a formula f of the form

t:C[p1 ⇒ C ′1, . . . pk ⇒ C ′k, pk+1 → t ′k+1, . . . pn → t ′n].

A DL knowledge base is a set of rules H : − B where H (the rule head)
is either of the form t:C, t[p ⇒ C’] or t[p → t ′] and B (the rule body) is a
conjunction of DL expressions such that

• B is tree-shaped if seen as an undirected graph and
• if H is of the form t[p → t ′], then there is no path from t ′ to t in B.

The top class > (respectively, bottom class ⊥) is a special class de-
fined as the super-class (respectively, sub-class) of every class in NC.
Formally, we have the rules x:> :− x:C and x:C :− x:⊥ for all C ∈ NC

and for all knowledge base. Moreover, the body of a rule can be empty
to express facts that always hold, i.e. assertions. For a given knowl-
edge base, the set of rules of this form is called an ABox while other
rules belong to what is called a CBox.

Example 7. Here is a simple example of knowledge base Kex, stating that ev-
ery space in a building is a body of water and every physical body, including
air, has some temperature property:

x:Air :− x:Space.

x:PhysicalBody :− x:Air.

x[hasProperty ⇒ Temperature] :− x:PhysicalBody.

2 in particular, classes and properties are respectively called concepts and roles in the
DL literature.
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The double-arrow (⇒) expresses an existential restriction on the class
PhysicalBody. It is comparable to the role played by blank nodes, at the
class level. Existential restrictions are the core of the DLs EL (which
stands for “existential logic”) and its successor EL++ [2, 3]. Definition
3 subsumes both logics in terms of expressivity. There exist more ex-
pressive DLs featuring e.g. class complements (¬C) and inverse prop-
erties (p−) but the DL fragment being considered here has desirable
computational properties, as we will see later.

The most expressive DL is denoted SROIQ. Like any DL, it is known
to be decidable: it is possible to resolve the satisfiability problem for
any axiom α and any knowledge base K in a finite amount of time
[99]. In contrast, the much more expressive FOL is undecidable, which
is one of the reasons why DLs were chosen over FOL as the basis for
OWL.

However, to keep decidability in SROIQ, some further conditions
apply to properties for a rule to be a valid DL rule. One of these con-
ditions, called regularity, is the existence of a partial order between all
properties in a knowledge base. These restrictions will not be devel-
oped here, the reader can safely assume they apply to all examples
shown in this thesis. It is also worth noting that the notation intro-
duced here differs from the classical DL notation with set-like oper-
ators (v,u,t). The underlying objective is to remain consistent with
the object notation that is otherwise develop in Ch. 4. This rule-based
notation is inspired by earlier observations that all DL axioms can be
expressed as rules of a certain form [39, 67]. The reader can refer to
Krötsch’s Description Logic Rules book for an exhaustive definition of
DL rules [67].

3.2.2.2 Semantics of Description Logics

In order to decide whether K |= α for some K, α, the semantics of DL
expressions must be defined. It is generally done in model-theoretical
terms. Model theory relies on the notion of interpretation. Intuitively,
every intelligent (WoT) agent builds an internal model of the physical
world by mapping an object representation (or some assertions) to
arbitrary symbols, i.e. by interpreting it. Formally, an interpretation
I is composed of an (arbitrary) domain of interpretation denoted ∆I

and an interpretation function denoted ·I that maps entity names to
∆I [99]. More precisely, for a class name C ∈ NC, we have CI ⊆ ∆I, for
a property name p ∈ NP, we have pI ⊆ ∆I×∆I and for an individual
name a ∈ NI, we have aI ∈ ∆I.

Definition 4. [69] Let f be a DL expression as per Def. 3. Let I be an
interpretation defining a domain of interpretation ∆I and an interpretation
function ·I. Let σ be a function σ : V ∪ NI 7→ ∆I such that σ(a) = aI for
all a ∈ NI and σ satisfies the following constraints for f:

• σ(t) ∈ CI
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• there exists δi ∈ ∆I such that 〈σ(t), δi〉 ∈ pIi and δi ∈ CI
i for all

i ∈ [1,k]
• 〈σ(t),σ(t ′j)〉 ∈ pIj for all j ∈ [k+ 1,n]

We say that I satisfies f and write I |= f if such a function σ exists for I.
Moreover, I satisfies a rule H : − B if I satisfies H or I fails to satisfy one
of the formulas in B. A knowledge base K is satisfiable if there exists an
interpretation that satisfies every rule in K. We say that I is a model of K
and write I |= K.

The same notation (|=) is used for satisfiability and entailment, as
we will see later when defining query answering. The two notions
shall however not be confused.

Example 8. In the previous example, one can observe that every model of
Kex will also satisfy the following rule:

x[hasProperty ⇒ Temperature] :− x:Space.

Indeed, for a model I of Kex, if there is σ such that σ(x) ∈ SpaceI ⊆
AirI ⊆ PhysicalBodyI, then there must exist δ such that 〈σ(x), δ〉 ∈
hasPropertyI and δ ∈ TemperatureI.

3.2.2.3 Relation to Other Logic Formalisms

It is well-known that SROIQ is a syntactic variant of a strict subset of
FOL. There exist other such subsets, especially in the field of database
research where the most notable formalism is Datalog [20]. The inter-
play between DLs, FOL and Datalog has been explored in depth in
the literature.

For instance, the intersection of SROIQ with Datalog is called DL
Programs (DLP) [43]. This DL fragment presents the advantages of
being supported by mature Datalog systems while also being tractable.
That is, the satisfiability problem can be solved in polynomial time.
DLP does not include existential restrictions, though. This limitation
motivated the definition of EL Programs (ELP), which combines DLP
with EL++ axioms, as well as some other Datalog constructs [69]. It is
similar, yet more expressive than another logic allowing for existential
reasoning over Datalog, called Datalog± [19].

Figure 8 shows the mutual inclusion of all these formalisms in
terms of epxressiveness (taken to the most part from the founda-
tion paper on Datalog± by Calí et al. [19]). The figure also includes
tractability results for the problem of satisfiability under different log-
ics. It has been proven that EL++ and ELP are tractable. Datalog±

was also specifically designed to retain tractability. Sec. 3.3.1 includes
a discussion on what formalism is suitable for existential reasoning
in WoT use cases.

So far, we have only considered the problem of satisfiability, the
simplest reasoning task. As already mentioned, reasoning is neces-
sary but not sufficient to solve specific problems. Computational (WoT)
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First-Order Logic

SROIQ (Description Logic)

EL++

EL Programs

EL

Datalog±

Datalog

Description Logic Programs

Logic Programs

Figure 8: Partial order in terms of expressiveness between logic formalisms
with existential restrictions related to DLs; tractable fragments are
represented in bold font, decidable fragments in italic for the prob-
lem of satisfiability
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agents likely need to query a database (e.g. to look at past observa-
tions) or extend a knowledge base with new observations. Next, we
review two more advanced reasoning tasks: query answering and ab-
duction.

3.2.3 Query Answering and Abduction

3.2.3.1 Conjunctive Query Answering

Query answering on knowledge bases with existential restrictions can
be defined as follows:

Definition 5. [68] A DL Conjunctive Query (CQ) Q is a conjunction of DL
expressions without existential restrictions, that is, of formulas of the form

t:C[p1 → t ′1, . . . pn → t ′n]

where t, t ′1 . . . t
′
n ∈ V ∪ NI, p1 . . . pn ∈ NP and C ∈ NC ∪ {>,⊥}. A

knowledge base K entails Q if for all model I of K, I also satisfies the expres-
sions of Q. The same notation is used for satisfiability and entailment, we
write K |= Q.

Example 9. In practice, CQ entailment is mostly relevant when a knowl-
edge base includes ABox assertions. If we add the assertion α = 31.638:Space
to Kex, then we have:

Kex ∪ {α} |= 31.638[hasProperty → y:Temperature].

Example 9 introduces the notion of substitution for a CQ, which
can also be formally defined. In the following definition and in the
remainder of the paper, NI

K denotes the set of individual names in K

and var(Q), the set of variables in Q.

Definition 6. Let K be a knowledge base and Q be a CQ such that K |= Q.
The CQ Q ′, obtained by replacing some x ∈ V in Q with an individual name
a ∈ NI

K, is a substitution for Q if we also have K |= Q ′. Moreover, Q ′ is
a minimal substitution for Q if there is no other substitution Q ′′ of Q such
that var(Q ′′) ⊆ var(Q ′) (up to a renaming of variables).

It is easy to see that substitutions closely relate to the function σ
defined in Def. 4. Indeed, given an model I of K, a substitution exists
for some a ∈ NI

K if and only if σ(x) = aI. We can further observe that
if a substitution exists for some model I, it is also valid for any other
model I ′ of K. Query answering is the problem of finding all minimal
substitutions for a given CQ, which is a more general problem than
query entailment.

A conjunctive query with no variable is called a Boolean CQ (BCQ).
In practice, it is common to consider a CQ only as a set of BCQs
obtained by substituting variables to named individuals. However,
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this conceptual shortcut excludes answers containing anonymous in-
dividuals, although they may also be semantically valid. The latter
answers are precisely those of interest in WoT: the temperature prop-
erty of room 31.638 is never explicitely asserted, as it would likely
be in an actual TD document. For instance, in the CQ of Ex. 9, y is
anonymous: there is no named entity that can be substituted to y so
that the expression is still entailed by Kex.

One can note that query answering subsumes the problem of sat-
isfiability. The example CQ that were just given can also be rewrit-
ten as the single axiom x:Space[hasProperty ⇒ Temperature]. CQs are
considered complex when they include at least one conjunction with
shared variables between formulas [18]. It is comparable to queries
with joins in relational databases. In fact, DL query answering shares
many aspects with relational algebra. The DL subset that gained most
attention with respect to query answering is called DL-Lite [17]. It has
the property that queries can be rewritten into a single FOL expres-
sion that can be processed by relational databases (a property called
FOL-rewritability). DL-Lite does not feature (qualified) existential re-
strictions, though.

In the general case, computational complexity for query answering
depends on the size of both the query and the database. It is common
to provide complexity results when either of them is bounded by a
maximum size (see e.g. results for RDF stores by Guttierez et al. [48]).
For fixed queries, it is called data complexity while for fixed databases,
it is called query complexity. The former is more interesting in prac-
tice, since most queries are of much smaller size than databases3. For
a DL fragment that excludes class disjunctions and complements, as
well as transitive and functional properties [18], DL query answer-
ing is tractable for the data complexity. This fragment, which has
much in common with Datalog±, is subsumed by Def. 3. However,
even for this DL fragment, there is no practical algorithm in the lit-
erature, as soon as knowledge bases include existential restrictions.
It is also known that conjunctive query answering on EL++ is also
tractable, which also features transitive properties [68]. Later in this
chapter (Sec. 3.3.4), this result will be further extended, by introduc-
ing a tractable query answering algorithm for knowledge bases as
defined in Def. 3.

To conclude this section on DL query answering, the closely re-
lated notion of explanation is introduced, mostly relevant in peer-to-
peer (WoT) systems to guarantee that agents can entail similar results,
given their own knowledge and some explanation provided by other
agents.

3 in the context of knowledge bases, a third class of complexity, called taxonomic com-
plexity, is generally of interest; it goes beyond the scope of this thesis, though, in
which CQs are limited to ABox statements.
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Definition 7. [99] An explanation for an CQ Q is a knowledge base E ⊆ K

such that E |= Q but for every subset E ′ ⊂ E, E ′ 6|= Q.

The term ’explanation’ is also used in the literature to refer to ab-
ductive reasoning procedures: if the definition above provides explana-
tions for queries that are entailed by some knowledge base, abduction
helps understand why some queries are not entailed. We review ab-
duction methods for DLs in the following.

3.2.3.2 Abductive Reasoning

Abduction can be described in general terms as the procedure of
finding missing axioms for a query to be entailed by a knowledge
base K. In that sense, every query answering problem is conceptually
equivalent to an abduction problem, such that all “abduced” axiom
is asserted in K [62]. However, there are infinitely many such axioms
and concrete formalizations usually involve external information not
directly provided by K. For instance, solutions may only contain a
subset of the properties, classes and individuals in K, defined on a
per application basis [119]. Early formalisms based on logic program-
ming also involve integrity constraints allowing or not certain axioms
[62]. In that respect, abductive reasoning significantly differs from
satisfiability and query answering, both referred to as deductive rea-
soning tasks.

For DL queries, abduction is formally defined as follows:

Definition 8. [119] Abduction consists in finding a knowledge base K ′

such that for a knowledge base K and a BCQ Q, it holds that:

• K∪K ′ |= Q

• K∪K ′ 6|= x:⊥(x ∈ V)
• K ′ 6|= Q

Conditions 2 and 3 exclude trivial solutions. Abduction on general
CQs can be answered by instantiating the CQ in every possible way
using terms from NI and a finite set of “fresh” IRIs (in order to obtain
BCQs) and then applying Def. 8.

There exists various works addressing abduction on different DL
fragments, with focus on tractability [29, 66, 119]. All of these works
reduce the solution space to ABox axioms, which are the most rel-
evant in practice. Complexity results are similar to those for query
answering: abduction procedures exist for FOL-rewritable DLs and
EL++. To the best of my knowledge, there is no algorithm covering
Def. 3.

As we saw in our review for query answering, today’s deductive
reasonning engines tend to ignore existential restrictions. One pos-
sible strategy to overcome this limitation is to formulate query an-
swering as an abduction problem, such that only property and class
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names involved in existential restrictions are abducible. It is equiva-
lent to dynamically generating Skolem constants during query pro-
cessing. This is e.g. the idea behind a recent experiment on Datalog±

knowledge bases where query answering is implemented with an
Abductive Logic Programming (ALP) engine [40]. Results of this ex-
periment suggest that this approach performs well on large ABoxes.

In an earlier publication, I made an attempt to formalize and imple-
ment reasoning with TD documents using ALP [25]. The underlying
DL was EL++. However, as we will see in Sec. 3.3.1, the expressivity
needed in WoT goes beyond EL++ and yet, there is no state-of-the-
art algorithm for more expressive DLs. In summary, it appears that
existential reasoning procedures relevant for WoT are at the limit of
what is known in DL research: new contributions are to be made to
the state-of-the-art.

The following section presents the problem of WoT semantic dis-
covery, formulated as an existential reasoning problem. It is formu-
lated only in terms of query answering; possible abduction-based op-
timizations are left as future work.

3.3 a framework for semantic discovery on the web of

things

We define the problem of semantic discovery as the discovery of pos-
sible interactions in a WoT system given a knowledge base that in-
cludes TD assertions. Semantic discovery accepts as input a set of
TD documents and domain-specific knowledge provided by Web on-
tologies. We have already seen numerous ontologies in Ch. 2 without
considering, however, their completeness in terms of axiomatization
to solve problems like semantic discovery. We first review axioms po-
tentially missing in the WoT ontology cloud (Sec. 3.3.1), before mov-
ing on to a formalization of semantic discovery (Sec. 3.3.2) and then
to implementation considerations (Sec. 3.3.4).

3.3.1 Expressiveness of a Web of Things Knowledge Base

The focus of this chapter is the discovery of new relations between
well identified ‘things’ by means of reasoning. Its basic assumption is
that Web ontologies provide rules that can be exploited to assert these
new relations in a knowledge graph, that is, a set of ABox assertions
from TD documents. The rules of interest in the present context are
those whose head includes existential restrictions (to introduce new
vertices in the knowledge graph) or relations between one or two
anonymous individuals (new edges). First, various DL features are
being reviewed as to whether they refer to either of these aspects in
order to decide on what DL fragment to target in WoT. The review
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dl feature ∃ occurrences

Existential restriction yes 562

Universal restriction no 2,383

Min. cardinality constraint yes 25

Max. cardinality constraint no 7

Class complement no 0

Self yes 0

Transitive property yes 8

Functional property no 1,462

Inverse property yes 280

Symmetric property yes 11

Reflexive property yes 0

Property chain yes 6

Table 8: DL features for classes (top) and properties (bottom) and their con-
tribution to existential reasoning; occurrences in the WoT ontology
cloud are given for each feature

is followed by examples of such axioms with classes from the WoT
ontology cloud.

Table 8 gives a list of the DL features that have an equivalent con-
struct in OWL. The reader can refer to Appendix A for a mapping
with DL rules as defined in Def. 3. The table is divided in two parts
depending on whether they refer to classes (and to inferring new ver-
tices) or properties (to infer new edges). First, it is easy to see that uni-
versal restrictions do not contribute to existential reasoning: for some
class C, an interpretation I can satisfy restrictionson CI regardless of
whether CI is empty or not. The observation also holds for class com-
plements and maximum cardinality constraints (for cardinalities of
two or more). On the other hand, minimum cardinality constraints
are relevant since they subsume existential restrictions, the only ded-
icated construct to express existence. The last class feature, to allow
individuals to refer to themselves, contribute to existential reasoning
via complex property chains.

All DL features referring to properties are relevant in WoT except
functional properties. By definition, the latter are used to identify
entities, like primary keys in a database. Functionality implies a max-
imum cardinality of one and like universal restrictions and class com-
plements, it does not help infer new individuals or relations. In con-
trast, property chains are the main construct to infer more knowledge
about anonymous individuals, beside their mere existence. Therefore,
they are important in WoT. Transitivity is a special case of property
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chain. Reflexive and inverse properties do not directly contribute to
inferring assertions on anonymous individuals but they do simplify
the axiomatization of Web ontologies, especially in defining property
chains. We will discuss their usefulness later in this section. The same
holds for symmetric properties, a special case of inverse properties.

Table 8 also shows occurrences of the different features in the WoT
ontology cloud. It appears that most logical axioms are not relevant
for existential reasoning. Still, it is possible to express rather simple
rules with the vocabulary it exposes (the class, property and individ-
ual names). Examples of such rules can be provided in particular on
two kinds of physical world entities: properties of features of interest
(like a temperature) and objects related to features of interest from
TD documents (like walls in a room).

Regarding properties (of features of interest), it is rather straight-
forward to create a knowledge base that gives the properties of phys-
ical world objects depending on their type. Fig. 9 provides an exam-
ple of classification for physical bodies that extends OM, the ontol-
ogy of units of measure. Physical bodies are first categorized accord-
ing to their phase (liquid, solid or gas). Every physical body has an
om:Volume and an om:Temperature but only fluids (liquid, gas) have
an om:Volumetric_flow_rate. The first example of last section (Ex. 7)
was a fragment of these axioms.

Physical quantities are further categorized according to the domain
of physics that defines them. For instance, volume is relevant in geom-
etry, property in thermodynamic and flow rates in mechanics. These
categories help express relations between distinct objects because they
share some properties.

Example 10. The following rule states for instance that two intersecting
fluids share the same thermodynamic properties:

x1[hasProperty → y] :− x1:Fluid[intersects → x2] and

x2:Fluid[hasProperty → y] and

y:ThermodynamicProperty.

Finally, certain properties like the deformability of fluids can be
expressed in terms of sensing and actuation on them. Deformability
means that any mechanical action on a fluid implies changes of its
geometry.

Example 11. The following rule indirectly defines the deformability of flu-
ids:
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hasProperty

hasPropertyhasProperty

Fluid

Gas

FeatureOfInterest

Property

Liquid

Air

PhysicalBody Solid

MechanicalPr...

Thermodyna...

Volume

Temperature
Volumetric_fl...

GeometricPro...

Figure 9: Main concepts of a knowledge base for physical bodies and their
properties (VOWL notation); label colors encode namespaces (blue
→ example namespace, red→ OM, purple→ SSN)
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x[actsOnProperty → z2] :− x:Actuator[actsOnProperty → z1] and

y:Fluid[

hasProperty → z1,

hasProperty → z2

] and

z1:MechanicalProperty and

z2:GeometricProperty.

Regarding physical world objects, the most interesting axioms to
formalize are the geometric relations between physical bodies.

Example 12. An example can be found in BOT, where bot:containsZone
property is declared as transitive:

x[containsZone → z] :− x[containsZone → y] and

y[containsZone → z].

It is possible to have even more generic relations considering only
the phase of physical bodies.

Example 13. For instance, the following rule states that a solid and a fluid
that are both within some physical body necessarily intersect:

x[intersects → z] :− x:Solid[within→ y] and

y:PhysicalBody[contains → z] and

z:Fluid.

Geo-spatial relations in Ex. 13 are provided by schema.org (sche-
ma:geospatiallyWithin and schema:geospatiallyContains).

The DL feature from Table 8 that were used to express these DL
rules are property chains and (indirectly) inverse and reflexive proper-
ties. The reader can refer to Appendix A for an explanation on how to
transform DL rules to so-called “qualified” property chains. However,
explicit inverse properties come with undesired effects: despite the
obvious symmetry between schema:geospatiallyWithin and sche-

ma:geospatiallyContains, introducing an explicit symmetry relation
between them would significantly increase the time complexity of
query answering, as we will see later. Since inverse properties do not
directly contribute to existential reasoning, they were purposely left
out in the present formalization of DL knowledge bases (recall Def.
3). Experimentally, I have never been confronted with the case where
they were strictly mandatory (contrary to property chains, which
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proved crucial). It is unclear, however, if this can be made a general
rule.

Next, a WoT-specific problem is being formalized on the basis of
existential reasoning, on the rules that were just presented. The result-
ing formalization holds regardless of the DL features allowed or not
in a knowledge base. The choice that has been made in that respect is
only relevant when considering practical implementation (Sec. 3.3.4).

3.3.2 Problem Statement

As mentioned previously, the basic assumption is that every WoT
servient exposes a TD document containing logical assertions that
use the vocabulary of some ontology, in which domain-specific rules
are also defined. For simplicity and without loss of generality, it is
assumed that all TD documents refer to the same ontology. Formally,
a set of n servients expose each an ABox Ai, i ∈ [1,n] that uses the
vocabulary of a shared CBox C. We denote A the ABox

⋃
iAi and K

the knowledge base defined as A∪ C.
On this basis, one can define a query answering problem to find

paths between instances of the class Thing (including paths with anony-
mous individuals) such that every discovered path corresponds to a
possible interaction between the servients that expose these Things.
The latter will be referred to as semantic discovery, defined as follows.

Definition 9. WoT semantic discovery on a knowledge base K =
⋃

iAi ∪C
and for a CQ Q is the task of finding every minimal substitution Q ′ that in-
cludes a ∈ NI

Ai
and b ∈ NI

Aj
distinct such that K |= a:Thing and b:Thing.

Interactions of particular interest are those between two servients
observing or acting on the same property of some feature of interest.

Example 14. Let us define some minimal TD for a radiator (A1):

31.638:Space[contains → s1:Radiator].

as well as a TD for a temperature sensor (A2):

31.638:Space[contains → s2:TemperatureSensor].

and a CBox similar to what was presented in Sec. 3.3.1 (C):
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x:[actsOnProperty ⇒ Temperature] :− x:Radiator.

x:[observes ⇒ Temperature] :− x:TemperatureSensor.

x:[hasProperty ⇒ Temperature] :− x:Space.

x[actsOnProperty → z] :− x[

contains → y,

hasProperty → z:Temperature

] and

y[actsOnProperty ⇒ Temperature].

x[observes → z] :− x[

contains → y,

hasProperty → z:Temperature

] and

y[observes ⇒ Temperature].

Let K be the knowledge base A1 ∪A2 ∪ C and Q the following CQ:

x[observes → z] and y[actsOnProperty → z].

The output of semantic discovery on K for Q is the single minimal substi-
tution Q ′:

s1[observes → x] and s2[actsOnProperty → x].

In practice, for a broader discovery taking into account sensor/sen-
sor and actuator/actuator interactions, one can introduce the prop-
erty relatesToProperty, as follows:

x[relatesToProperty → y] :− x[observes → y].

x[relatesToProperty → y] :− x[actsOnProperty → y].

and then run semantic discovery on the following query:

x[relatesToProperty → z] and y[relatesToProperty → z].

This is the query that was used for experiments, presented later
(Sec. 3.4).

When an interaction indeed takes place in a system, it can be stated
by an ssn:hasSubSystem relation between a composite system and its
sub-systems. The assumption is that TD documents are managed by
the servients themselves, as opposed to being stored in a central RDF
store. As a consequence, these TD documents may be updated with
the results of semantic discovery, in order for all servients involved
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in a new interactions to have sufficient knowledge about it. That is,
servients should be able to entail the discovered CQs from their own
ABox. This relates to the notion of query explanation we defined ear-
lier in this chapter (Def. 7).

Definition 10. Let E be an explanation for a CQ Q on K. The update ABox
for Q is the ABox A ′ =

⋃
iA
′
i such that for all Ai where NI

Ai
∩ NI

E 6= ∅,
A ′i = E \Ai.

Given Def. 10, it then holds that (Ai ∪A ′i)∪C |= Q. One can further
note that update ABoxes can be computed incrementally. That is, if A ′i
is the update ABox resulting from a first discovery on servient with
ABox Ai, when discovery is performed a second time, the new update
ABox A ′′i can be computed against Ai ∪A ′i such that A ′i ∩A ′′i = ∅.
Incremental update of ABoxes has practical benefits since it is likely
that servients enter a WoT system at different times over the lifecycle
of that system.

Example 15. The update ABox for Ex. 14 is the union of the following
ABox for the radiator (A ′1):

31.638[contains → s2:TemperatureSensor].

and the following ABox for the temperature sensor (A ′2):

31.638[contains → s1:Radiator].

In the general case, the update ABox for a given servient is in-
versely proportional to its prior level of knowledge.

3.3.3 Generalization

The semantic discovery framework that was just presented aims at
discovering interactions between WoT servients. We can now come
back to the initial abstraction for WoT systems of Sec. 1.2.3 and pro-
vide general semantics for WoT as a mapping between a graph of
interactions and a knwoledge graph.

We recall that WoT were defined as systems as multi-agent systems,
primarily defined by a graph of interactions. The latter is a graph
G = 〈V ,E〉 such that V is a set of servients and E a set of unordered
pairs {x,y} whenever servient x interacts with servient y. Considering
the (possibly contradictory) goals of WoT servients is out of the scope
of this thesis, as is an analysis of the events to which they react. In-
stead, WoT semantics only aim at preserving the logical consistency
of the system by guaranteeing that every interaction can be explained
in terms of knowledge graph. As a consequence, edges of an graph
of interactions are undirected, since a client can initiate the request as
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well as it can receive an asynchronous notification from the server in
a particular exchange. In fact, the interaction might even be mediated
by some other device but it is of little interest from a semantic point
of view to distinguish the case where interactions are mediated and
when they are direct (they are then called peer-to-peer interactions).

In the previous section, it was assumed that every servient interac-
tion relates to a specific CQ Q involving the Things they expose, such
that for a knowledge base K describing the system and its environ-
ment, we have K |= Q. In other words, we assumed that every edge
in G is labeled with some minimal substitution for Q. If we gener-
alize, edges of a graph of interactions can be labeled with any DL
expression entailed by K.

Definition 11. Let G = 〈V ,E〉 be a graph of interactions and K a knowl-
edge base for a WoT system. Let F the set of DL formulas. The semantics
of a WoT system is the bijection J·KK : E 7→ F such that for e ∈ E and
f = JeKK ∈ F:

• K |= f

• K |= a:Thing and b:Thing for a, b ∈ NI included in f
• f is minimal as per Def. 6

Given Def. 11, several theoretical problems can be defined for a
WoT system. We can e.g. reformulate semantic discovery as the prob-
lem of finding the inverse of J·KK for some CQ Q, i.e. for a subset of
F. Another problem of interest is that of computing JeKK for every e
in some graph of interactions G.

Example 16. Consider the knowledge base K of Ex. 14 such that the two
servients s1, s2 are synchronized to keep the temperature of room 31.638
constant. We then have G = 〈{s1, s2}, {e = {s1, s2}}〉 and:

JeKK = s1[observes → x] and s2[actsOnProperty → x].

The semantics introduced here—the corner stone of this thesis—
closely relates to DL query answering, regardless of the problem we
consider. Next, we shall consider concrete implementation aspects of
query answering in the presence of existential restrictions.

3.3.4 A Tractable Approach

In Ex. 14, discovery is only successful if existential restrictions in C are
correctly processed. Indeed, no temperature property of room 31.638

is explicitely named, although it is known that every room has some
temperature (as has every body of air). As underlined in the earler
review of the state-of-the-art in DL reasoning (Sec. 3.2), there is no
dedicated algorithm for conjunctive query answering with existential
restrictions: most known implementations of DL reasoners that pro-
vide query answering are not complete. A straightforward remedy
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is to emulate the original knowledge base by creating Skolem con-
stants wherever the existence of some entity is stated and run classi-
cal query answering algorithms over the emulated knowledge base.
The skolemize procedure introduced in the following follows that
principle (Alg. 1). Equivalence in terms of query answering between
a knowledge base and its emulated form is then proven (Th. 2).

Algorithm 1 Skolemization algorithm for a knowledge base K with
existential retrictions. S is a subset of the individual names in K and
n an arbitrary integer.

1: function skolemize(K, S ⊆ NI
K, n)

2: Let K ′ = K, S ′ = ∅
3: for all a ∈ S, p ∈ NP

K,C ∈ NC
K, s.t. K |= a[p ⇒ C]. do

4: Let b be a fresh individual (Skolem constant)
5: K ′ := K ′ ∪ {a[p → b:C].}
6: S ′ := S ′ ∪ {b}
7: end for
8: if n = 1 then
9: for all f in K of the form t[p ⇒ C] do

10: Let x be a fresh variable, f ′ := t[p → x:C]
11: Replace all occurence of f in K ′ with f ′

12: end for
13: return K ′

14: else
15: return skolemize(K ′, S ′, n− 1)
16: end if
17: end function

To prove the equivalence between an input K and the output of
Alg. 1, it must first be proven that DL bases as defined in Def. 3

have the so-called finite model property [99], which would guarantee
the termination of skolemize. Theorem 1 puts it in formal terms.

Theorem 1. Let K be a DL knowledge base. K is satisfiable if and only if
there exists a finite model I of K.

Proof. The theorem immediately follows from the fact that the defini-
tion of DL rules given in the thesis excludes cardinality constraints
[4].

The equivalence provided by Alg. 1 can now be proven.

Theorem 2. Let K be a DL knowledge base, i. e.a set of rules of the form
H : − B. Let n be the maximum number of variables in B over K and
Q be a conjunctive query using the vocabulary of K. The knowledge base
Kn, obtained by the application of skolemize (Alg. 1) on K, NI

K and n,
emulates K and K |= Q if and only if Kn |= Q.
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Proof. We start by observing that for all model I of K, all path 〈aI, δ1〉,
. . . 〈δk−1, δk〉 is at most of length n, for some a ∈ NI

K and δ1, . . . , δk
anonymous. Proof: for all rule H :− B in K, s.t. I satisfies both H and
B, all property chains in B are of the form t1[p1 → t2], . . . , tn−1[pn
→ tn] (as per Def. 3). The resulting path in ∆I is of maximum length
when tIi 6= tIj for all distinct i, j ∈ [1,n], that is, of length n.

We can now proceed to a proof for emulation, which is defined by
two criteria [99]:

(1) Hypothesis: I |= Kn. The goal is to prove that I is also a model of
K. If, for all formula in Kn, there is σ satisfying Def. 4 for I, then
it also satisfies all formulas of K with no existential restriction.
If a formula includes a restriction ti[p ⇒ C] in K, then there is
an equivalent formula ti[p → x:C] in Kn, s.t. 〈σ(ti),σ(x)〉 ∈ pI

and σ(x) ∈ CI. Then δi = σ(x). If I fails at satisfying some
formula in a rule body, then no σ exists and more precisely, if it
fails for some existential restriction, there is no domain element
σ(x) and therefore no δi either. In both cases, I |= K.

(2) Hypothesis: I |= K. The goal is now to construct I ′, s.t. I ′ |= Kn,
∆I ′ = ∆I and ·I ′ = ·I for every name in NC

K ∪NP
K ∪NI

K. We de-
fine I ′, s.t. the latter constraint is met. Let σ be the function satis-
fying all constraints on K for I, s.t. there is no map µ : ∆I 7→ ∆I,
s.t. σ ◦µ also satisfies all constraints on K. σ always exists and is
unique (up to a renaming of individuals) [48]. If σ(x) is anony-
mous for some variable x in K, then there is a path 〈aI, δ1〉,
. . . , 〈δk−1, δk〉 with k 6 n (as per our preliminary observa-
tion), aI some named individual and δk = σ(t). Furthermore,
let this path be the shortest path, s.t. for some p1, . . . , pk, we
have 〈aI, δ1〉 ∈ pI1, . . . , 〈δIk−1, δk〉 ∈ pIk and for some C1, . . . ,Ck,
we have δ1 ∈ CI

1, . . . , δk ∈ CI
k, in order for this path to be

unique (otherwise, it would be possible to define µ). It follows
that a[p1 ⇒ C1] and therefore, there must also be some Skolem
constant b1, s.t. a[p1 → b1:C1] is in Kn. We then define bI

′

1 = δ1,
from which follows that 〈aI ′ , bI

′

1 〉 ∈ pI
′

and bI
′

1 ∈ CI ′ , given that
pI
′
= pI and CI ′ = CI. Therefore, I ′ |= a[p → b1:C]. Similarly,

we define bI
′

i = δi for all i ∈ [2,k], s.t. I ′ |= bi−1[pi−1 → bi:Ci],
generated in the i-th recursive call of skolemize (i 6 k 6 n).
Finally, we have I ′ |= Kn with σ satisfying all constraints on
Kn.

We then proceed to a proof for reciprocity w.r.t query answering:

(if) Hypothesis: Kn |= Q. Because Kn emulates K, all model I of K
has the same image as some model I ′ of Kn (and Q) using some
function σ ′. The goal is to prove that σ ′ also satisfies constraints
on Q for I. By virtue of emulation, we have CI ′ = CI for all C ∈
NC
K, from which directly follows that for all t:C in Q, σ ′(t) ∈ CI.

Similarly, pI
′
= pI for all p ∈ NP

K and 〈σ ′(t1),σ ′(t2)〉 ∈ pI for all
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t1[p → t2] in Q. Therefore, σ ′ indeed satisfies all constraints for
I.

(only if) Hypothesis: K |= Q. Do we have I ′ |= Q for all model of Kn? We
proceed by contradiction and assume I ′ 6|= Q for some model I ′

of Kn. It still holds that I ′ |= Kn, therefore I ′ |= K (by virtue of
emulation) and I ′ |= Q (Def. 5), which contradicts the hypothe-
sis.

Alg. 1 requires reasoning only to satisfy simple existential restric-
tions on individuals, that is, expressions of the form a[p ⇒ C] (l. 3).
The latter is not a complex query and, in fact, it is not even a BCQ (Def.
5 excludes existential restrictions). Proving that K |= a[p ⇒ C], what
is called instance checking, is a much simpler task than query answer-
ing. The DL literature provides an instance checking algorithm for
any DL fragment. In particular, a tractable algorithm based on some
transformation to Datalog exists for ELP (a “combination” of EL++

and DL programs). Intuitively, the skolemize procedure reduces gen-
eral query answering to a finite number of applications of instance
checking. The increase in size during skolemization is bounded by
(NI

K.NR
K.NC

K)n in the worst case (max. n variables per rule). For ar-
bitrary knowledge bases, this leads to an exponential blow-up. In
practice, however, it is reasonable to assume that n is bounded. For
instance, in all experiments, rules in K have at most five variables.
This allows one to retain tractability, as stated in the following theo-
rem.

Theorem 3. Let K be a knowledge base as per Def. 3 such that for all rule
H : − B in K, B has at most n variables. Query answering for K (with
existential reasoning) can be computed in polynomial time with respect to
the size of K.

Proof. By definition, any DL knowledge base as defined in Def. 3 is in
the DL fragment of ELP, for which satisfiability and classification are
polynomial [69]. During the application of skolemize, classification is
called a finite amount of time on a knowledge base whose size (w.r.t.
class, property and individual names) increases linearly w.r.t. the in-
put K (for a fixed n). skolemize therefore returns in a polynomial
amount of time w.r.t. the size of K.

Query answering on the output knowledge base K ′ is in turn poly-
nomial w.r.t. the size of K ′, which immediately follows from the ob-
servation that it can be reduced to instance checking (in ELP), given
that every individual for some model I ′ of K ′ is named.

As already mentioned, all the logics that are considered in this
chapter are standardized by OWL, the reference language for Web on-
tologies. There exists numerous commercial solutions for RDF storage
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that include standard OWL reasoning, like GraphDB4 and Stardog5.
The implementation of skolemize against such RDF stores is rather
straightforward. Query answering without existential restrictions, as
output by skolemize, can then be delegated to the SPARQL engine
these solutions implement. SPARQL is the standard RDF query lan-
guage [44].

OWL reasoners are designed for expressive DL axioms, most of
which being out of the scope of this thesis to retain tractability. It
is therefore not clear whether RDF stores will have satisfactory per-
formances for WoT use case. An alternative consists in transforming
DL rules into equivalent Datalog programs with specific constructs
to then load them into deductive database systems like RDFox [88]
or XSB6 [102]. In contrast to RDF stores, however, most deductive
database systems are prototypical or dedicated to research. The fol-
lowing section includes details on the implementation that was used
as are provided experiments to evaluate the practical feasability of
the approach.

3.4 proof of concept & evaluation

The semantic discovery framework defined in theoretical terms in
this chapter (Def. 9) relies on a discovery agent that first collects
available TD documents in a system and then resolves the given
query answering problem. These two steps must be performed re-
gardless of the type of system (mediated or peer-to-peer). Optionally,
for peer-to-peer systems, the individual components of the system—
the servients—can be notified of the discovered relations with other
servients. One can call this discovery agent, in simple terms, a TDir.

My TDir implementation offers a registration Web interface de-
signed after the IETF Resource Directory specification7 and backed
by an RDF store. TD documents can be registered in plain JSON, one
of the RDF serialization formats (Turtle, RDF/XML or JSON-LD) or
the IETF CoRE Link format and its derivatives [109]. The latter tar-
get constrained environments by providing concise serializations (see
next chapter for a more detailed discussion on the so-called Embed-
ded Web). To a lesser extent, this TDir implementation is also inspired
from the early Hypercat specification, a Web resource catalogue with
RDF-like annotations8, with the difference that this implementation
also provides a SPARQL interface with off-the-shelf OWL reasoning.
The source code of this TDir can be found online9.

4 http://graphdb.ontotext.com/

5 https://www.stardog.com/

6 if used in its Datalog flavor, with tabling.
7 https://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/

8 http://hypercat.io/

9 https://github.com/thingweb/thingweb-directory/

http://graphdb.ontotext.com/
https://www.stardog.com/
https://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/
http://hypercat.io/
https://github.com/thingweb/thingweb-directory/
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TDir-based semantic discovery was tested on two use cases to em-
pirically evaluate its feasability, in different domains of application
for WoT: BA, on a sensor network setup provided by Intel Labs, and
Industrial Control Systems (ICS) with the water management use case
that was presented in Sec. 1.2.2.

3.4.1 Use Case: Intel Labs Sensor Network

The Intel Labs sensor network is an experimental setup originally de-
signed to study the routing of sensor measurements in a constrained
node network10. It consists of 54 wireless devices called motes with
as little as 8kB RAM, deployed homogeneously over an entire floor
of the Intel Labs building to cover different zones: meeting rooms,
closed offices, open space, entrance hall and kitchen (Fig. 10). All de-
vices have identical capabilities: they can measure temperature, hu-
midity and illuminance.

Figure 10: Map of the Intel Labs sensor network (Source: Intel Labs)

This setup was not originally intended for WoT use cases but it
may corresponding to what a future WoT system will look like: a
dense network of low-power connected devices that are capable of
self-organzing in order to collectively achieve certain goals. In partic-
ular, the following system can be identified for this sensor network:

hvac anomaly detection Devices measuring temperature and
humidity on the same body of air exchange measurements with
their neighbors to detect anomalies, i.e. high localized gradi-
ent values, in Heating, Ventilation & Air Conditioning (HVAC)
equipment.

If the system included actuators and sensors of different kinds, the
range of possible interactions would be significantly wider. Yet, this

10 http://db.csail.mit.edu/labdata/labdata.html

http://db.csail.mit.edu/labdata/labdata.html
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particular use case offers a simple setup to test the feasibility of se-
mantic discovery in practice. The only criterion to decide whether
two wireless devices should interact is their location, that is, the zone
they observe (in the sense of bot:Zone, a bounded space relevant for
HVAC and lighting systems). Here, it is assumed that a map of the
Intel Labs office giving its different zones is available in RDF and, a
fortiori, as DL assertions to include to the knowledge base used for se-
mantic discovery. It is safe to assume that for every BA use case, such
information is available. Recall e.g. the IFC and Project Haystack infor-
mation models, both ported to OWL (Table 3): these models are used
by architects and civil engineers throughout the design of a building.
They are part of what is commonly referred to as a Building Informa-
tion Model (BIM).

Example 17. Below is an excerpt of the BIM that was used for this experi-
ment. First, a small class hierarchy was defined for the Intel Labs office.

x:Solid :− x:Wall.

x:Air :− x:Space.

x:Zone :− x:Space.

x:Space :− x:Hall.

x:Space :− x:ConferenceRoom.

Then, the adjacency relations between spaces and separating walls were
asserted, as follows (excerpt):

hall:Hall[adjacentElement → leftWall:Wall].

room:ConferenceRoom[

adjacentElement → leftWall:Wall,

adjacentElement → rightWall:Wall

].

The rest of the knowledge base for this use case is similar to what
was given in Ex. 14 (with instances of TemperatureSensor only). The
complete RDF documents can be found online11. Semantic discov-
ery ran for the CQ that was provided earlier (after introducing the
generic property relatesToProperty), for which one obtains the graph
of interactions shown on Fig. 11. What is immediately identifiable
on this figure are the three complete subgraphs that dominate the
distribution of edges. Each represent a portion of the open space (left
side, hall and right side): all devices located in the same zone actually
observe the same temperature value. They can therefore all interact

11 https://github.com/vcharpenay/urdf-store-exp

https://github.com/vcharpenay/urdf-store-exp
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with any other device in that zone in order to detect anomalies on the
measured temperature. Other subgraphs of size one, two and three
represent isolated devices located in meeting rooms or closed offices.
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Figure 11: Graph of interactions for the Intel Labs sensor network

What this graph reveals is the high imbalance in terms of coverage
of the physical space: if one of the isolated devices fails, a whole seg-
ment of the office will not be covered anymore, while the failure of a
device in the open space would not affect the “physical” coverage of
the sensor network. The Intel Labs dataset comes with temporal data
indicating the connectivity status of devices between February 28th
and April 5th, 2004. This data was plotted on Fig. 12. Over the course
of the experiment, more and more devices go offline, most likely be-
cause of power outage, until the percentage of online devices (mote
coverage) eventually reaches 0% on April 3rd. As a comparison, a
graph of interactions was computed at every point in time and com-
puted the percentage of remaining connected subgraphs compared to
the original graph, that is, the percentage of anomaly detection sys-
tems one could still implement with the remaining devices. Surpris-
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ingly, we observe that the first devices to go offline are those placed in
open spaces and thus redundant: until March 22nd all subgraphs are
still present although 20% of devices went offline. Then, until April
1st, although only 10% of devices are online, we still have 50% of
physical coverage.
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Figure 12: Evolution over time of mote coverage (number of online motes)
and physical coverage (number of connected components in a
graph of interactions) in the Intel Labs sensor network

3.4.2 Use Case: Water Management Plant

The Intel Labs setup was highly homogeneous and exploratory in-
sofar as no existing WoT system shares the same characteristics yet.
In contrast, the other setup that was experimented with is hetero-
geneous and the WoT servients it embeds are fully operational. It
consists in an industrial workstation that includes water tanks and cir-
culation pipes, equipped with various automation devices like valves,
water level sensors, a flow meter, a temperature sensor, a pump, and a
heater. This workstation is meant to simulate a water treatment plant
in which water flows from one tank to the other. It has been equipped
with six Micro-controller Units (MCUs) acting as WoT servients with
IP connectivity. An overview of the workstation is provided in Fig.
13.

These micro-controllers are ESP8266 (64kB RAM, 80 MHz), they all
embed a TD document in a lightweight RDF store designed for con-
strained devices, called the µRDF store, which is the main topic of Ch.
4. These TD documents include assertions that use SOSA, SSN and
eCl@ss. eCl@ssOWL was slightly extended for the needs of the exper-
iment. Essentially, the extension consists in an alignment with SSN



3.4 proof of concept & evaluation 69

(a) Model (b) Logical circuit

Figure 13: Overview of a water management plant model with ESP8266

micro-controllers

and links between sensors and actuators and the physical quantities
they relate to.

Example 18. One can distinguish between automation devices (sensors/ac-
tuators) and other kinds of equipment. The former would then be defined as
Systems and the latter as Platforms, as follows:

x:Platform :− x:WaterTank.

x:Platform :− x:PlasticPipe.

x:Actuator :− x:Pump.

x[actsOnProperty ⇒ VolumetricFlowRate] :− x:Pump.

x:Actuator :− x:PneumaticValve.

x[actsOnProperty ⇒ VolumetricFlowRate] :− x:PneumaticValve.

x:Sensor :− x:FloatSwitch.

x[observes ⇒ Height] :− x:FloatSwitch.

x:Sensor :− x:UltrasonicSensor.

x[observes ⇒ Height] :− x:UltrasonicSensor.

Instances of FloatSwitch and UltrasonicSensor both measure the level of
water in a tank, either as a binary value or as a decimal.

Given rules like in Ex. 11 about the deformability of fluids, one can
discover potential interactions between e.g. a float switch and a valve,
since opening a valve mechanically lowers the level of water in some
tank. Like in the previous BA experiment, it is assumed assume that
some factory plant or circuit description is available as DL assertions,
after transformation from another machine-readable format (as in Fig.
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13b). Again, all RDF files are available online12. In total, five systems
could be identified, formed by combining servient capabilities (and
thus, by making them interact). These systems are the following:

valve control An open/close or proportional valve is coupled to
a water level sensor to avoid overflow. When water level in a
tank goes above a certain threshold, the valve opens.

pump control A water pump is coupled to a water level sensor to
refill a tank when necessary. When water level in a tank goes
below a certain threshold, the pump starts.

heater control A temperature sensor is coupled to a heater to
maintain water at a stable temperature by turning on and off
heating (thermostat).

circuit anomaly detection A flow meter and a valve are syn-
chronously monitored to detect potential anomaly in a circuit,
e.g. when the measured flow is not null but the valve is closed.

water circulation A pump and a valve are synchronously acti-
vated to keep water flowing in a closed loop, e.g. for cleaning
purposes.

Each system shall result from the interactions of two servients, each
exposing (at least) one ‘thing’. These systems can be themselves com-
bined to perform more elaborate (and more realistic) tasks; the for-
malization of semantic discovery presented here would still cover
these cases.

Semantic discovery ran for the same CQ as in the Intel Labs setup
(with relatesToProperty). One obtains eight edges in the graph of inter-
actions. All five compound systems can be instantiated, ‘Water Circu-
lation’ can even be instantiated in two different ways and ‘Valve Con-
trol’ three times. The whole graph of interactions is showed in Fig.
14. In practice, this graph can be used for various purposes, such as
the identification of critical points in the network (nodes with a high
degree), in a similar fashion to what was described with Intel Labs
motes. Here, one of the nodes has a degree of seven, for a maximum
degree of 16. If the servient is decommissioned and removed from
the network, half of the discovered systems would stop functioning.

3.5 summary

In this chapter, Web ontologies were formalized as sets of logical rules
with classical DL semantics. On this basis, different reasoning tasks
can be defined to extend a knowledge graph with implicit knowledge.
The reasoning task of interest in WoT is that of query answering, which
consists in finding possible substitutions for a DL expression with
variables that are satisfied by a set of rules. The semantics of WoT

12 https://github.com/vcharpenay/urdf-store-exp

https://github.com/vcharpenay/urdf-store-exp
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Figure 14: Graph of interactions for the water management plant model of
13; servients are identified by their IP address

interactions for a graph of interactions G = 〈V ,E〉 and a knowledge
base K (a knowledge graph with rules) was defined as a mapping
from some edge e ∈ E to a DL expression f that connects two Things
such that K |= f and f is minimal for K (Def. 11).

From this definition, one can define a discovery task which consists
in computing the biggest graph of interactions one can obtain for a
query Q and a knowledge base K. This kind of semantic discovery
reduces to query answering. I implemented it for two use cases: first,
in a BA system originally designed for research in sensor networks
at Intel Labs and second, in the water management plant that was
briefly introduced in Ch. 1. In addition, it could be showed how the
formalism for WoT semantics given in this thesis helps monitor a
system: on Fig. 12, it was showed that a decrease in the number of
sensors does not directly affect “physical” coverage of the Intel Labs
open space.

One particularity of the DL formalism that was presented is that
it includes existential restrictions in DL expressions that state the ex-
istence of an entity without knowing its identifier. Reasoning with
existential restrictions in WoT allows a system to further extend its
perception by inferring the existence of physical world entities that it
does not directly observe. It is indeed likely that this kind of inference
is necessary to capture the complexity of WoT systems from a limited
set of ‘things’ being exposed by servients.
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The state-of-the-art in query answering lacks maturity with respect
to existential restrictions. What was first observed is that the set of
ontologies identified in Ch. 2 (referred to as the WoT ontology cloud)
has only few of them and, more generally, it contains few rules to deal
with anonymous entities (qualified role inclusions). It was therefore
necessary to introduce some rules to do reasoning with physical bod-
ies (solids, fluids) and their properties (mechanical, thermodynamic,
geometric). It is also well-known that the main DL query answer-
ing engines do not correctly process queries with anonymous entities.
This chapter introduced a skolemization algorithm and identified a
DL fragment for which the algorithm is tractable (Alg. 1). The two
experimental use cases both require a proper skolemization for the
correct answer to be found.

The existential reasoning task developed in this chapter is distinct
from cause-and-effect reasoning, in which WoT agents plan certain ac-
tions based on desired effects. Contrary to the complementary task of
existential reasoning, cause-and-effect reasoning requires a feedback
loop to ensure that desired effects are consistent with actual effects
of some action. In existential reasoning, the assertions that can be in-
ferred depend only on the ‘things’ in the system that are described in
a TD document. In the next chapter, we get interested in collecting TD
documents in order to perform reasoning, in particular in constrained
environments.



4
E X C H A N G I N G T H I N G D E S C R I P T I O N S

4.1 introduction

WoT and the IoT borrowed many aspects from the field of ubiquitous
and pervasive computing, as we saw in introduction (Sec. 1.2.1). One
of the objectives of this field of research is to achieve a form of in-
telligence by demultiplying the number and type of computational
agents. More precisely, ubiquitous computing aims at designing intel-
ligent systems with high perception capabilities [94, 100]. The kind of
intelligence IoT systems feature is not necessarily the same across sys-
tems, though. Currently, the most common IoT architecture revolves
around Cloud platforms that implement IoT protocols to let masses
of low-power devices stream data to the Cloud, in a unidirectional
fashion. In this configuration, intelligence primarily comes from the
aggregation of data in one place (e.g. via stream processing [74]). It
is a kind of “individual” intelligence which is arguably outside the
scope of WoT. Indeed, the decentralized nature of the Web should
favor “collective” intelligence that materializes as the sum of the con-
tributions of intelligent agents.

From the many features that may define intelligent systems (like
autonomy, adaptability or introspection), the most important one in
WoT is arguably self-awareness. Self-awareness of WoT servients is nec-
essary (but not sufficient) to achieve self-organization and fulfill some
automation task as a multi-agent system. It implies that interacting
agents must themselves provide affordances to these interactions. In
other words, WoT servients should expose and be able to interpret a
TD document themselves.

The experiments that were conducted on semantic discovery rely
on the somewhat classical assumption that interlinked documents
exposed on WoT are first indexed: TD documents were indexed in
a TDir in a similar fashion to how early Web portals worked. Un-
like the Web of pages, however, WoT systems are backed by a highly
heterogeneous infrastructure ranging from Cloud servers to network
gateways and low-power edge devices. In the architecture of WoT, ev-
ery computational agent may get involved in some interaction (at an
application level, as opposed to the lower transport and link levels)
[64]. A necessary consequence of this “freedom” in terms of infras-
tructure is that TD documents may be served by any kind of servient,
in particular by MCUs and other low-power devices at the edge of a
communication network. In the scope of this thesis, it is especially of

73
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interest to look at the exchange of TD documents by MCUs for it is a
first step towards (collective) intelligence.

In practice, WoT servients should be able to expose a TD document
to be indexed by some TDir but also to query the logical assertions it
contains, even in a basic fashion. Yet, logic-based intelligent systems
are generally hard to design. In Poslad’s Ubiquitous Computing [94],
the problem is summarized as follows:

Intelligent systems are closely related to ubiquitous com-
puting (and siblings). Design issues of FOL-based intelli-
gent systems are computational complexity, consistency of
axiomatization accross agents.

Web ontologies, by definition, guarantee some consistency across
servients in terms of axiomatization but their use comes with ver-
bosity in expressing knowledge. In particular, it is not trivial to effi-
ciently compress IRIs. Moreover, the problem of computational com-
plexity cannot be addressed only in terms of theoretical classes of
complexity (like P for polynomials). At the scale of MCUs, various
factors impacting memory and power consumption must be taken
into consideration. For instance, it is important to know the degree of
polynomials characterizing tractability.

This chapter introduces the µRDF store, an RDF store designed
for MCUs, technically enabled by a binary format for RDF designed
for that purpose. Efficient compaction of RDF graphs is achieved by
contextualizing the assertions it includes. It is a common leverage in
the field of embedded software development, as mentioned already
in 1991 and later quoted by Poslad:

[Computation power] is one resource that crucially af-
fects the semantics of its outputs because contexts are more
likely to change in dynamic environments and when re-
source constrained systems are situated in dynamic envi-
ronments.

After a review of the (Semantic) Web technologies in use in embed-
ded environments (Sec. 4.2), this binary format for RDF is presented
in details (Sec. 4.3), followed by an evaluation of the µRDF store in
terms of compaction ratio and feasability for query answering (Sec.
4.4).

4.2 related work : the embedded semantic web

The review that unfolds in this section is a technological review, to
the most part. It includes newly standardized technologies that deal
with embedded devices, along with several prototypical works apply-
ing these technologies. The flagship contribution in that respect is the
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web embedded web

HTTP CoAP [110]

XML EXI [106]

JSON EXI4JSON [92], CBOR [13]

HTML CoRE Link [109]

RDF HDT [34, 35, 38], RDF/EXI [71]

JSON-LD Binary object notation (Sec. 4.3.1)

LDP LDP over CoAP [83]

SPARQL Frame matching (Sec. 4.3.2)

Table 9: Main standards of the (Semantic) Web and their equivalence with
Embedded Web technologies

work by Guinard and Trifa in 2009, which settles the term of ‘Web of
Things’ [46]. Yet, most contributions that are, conceptually, the clos-
est to this foundational work progressively developed the alternative
notion of ‘embedded Web’, which is arguably more accurate. Em-
bedded Web technologies have in common that they tend to “imitate”
widespread Web technologies like HTTP, with the difference that they
explicitely target constrained environments. A few attempts to apply
them to the Semantic Web and RDF have also been proposed. The
review starts with a general introduction to the Embedded Web and
then focuses on these works.

4.2.1 The Embedded Web

Standardization for the Embedded Web is mostly driven by the In-
ternet Engineering Task Force (IETF) and its Constrained RESTful En-
vironment (CoRE) working group1, which has been designing stan-
dards targeting constrained IP-connected devices. These standards
aim at providing similar functionalities to the “classical” Web tech-
nologies, that is, RESTful, hypermedia-driven Web interfaces. The
CoRE group has standardized the Constrained Application Proto-
col (CoAP) [110], the Constrained Binary Object Representation (CBOR)
[13] and the CoRE Link format [109]. Together with the Efficient XML
Interchange (EXI) format [106], these standards form a binary alterna-
tive to the otherwise text-based standards usually involved in Web
service implementations [70, 108]. Table 9 shows the equivalence with
HTTP, JSON, XML and (to some extent) HTML.

In the present context, a constrained device is a low-power MCU
with 8 to 64 kB RAM [12]. Typically, such a device is too constrained

1 https://datatracker.ietf.org/wg/core/charter/

https://datatracker.ietf.org/wg/core/charter/
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to support standard Web technologies but powerful enough to inte-
grate an IP connectivity stack. For instance, for the most constrained
of these devices, IP version 6 can still be achieved given a few opti-
mizations on message sizes. Some of these optimizations have been
standardized by the IETF under the name 6LoWPAN2. This class
of devices gained particular attention in the past decade, especially
through the development of dedicated operating systems like Con-
tiki [30] and TinyOS [80]. All recent standards focusing on MCUs
allow for novel machine-to-machine interaction patterns involving
many devices in highly decentralized systems. In other words, the
Embedded Web realizes the MAS vision of WoT that was adopted in
this thesis. It is also worth noting that the IRTF (the daughter organi-
zation of the IETF dedicated to research) works jointly with the W3C
in this direction3.

The European project SPITFIRE [93] paved the way to the use of
RDF and other Semantic Web technologies on the Embedded Web,
combining it with architectural principles of WoT. Since then, several
methods were proposed to serialize and process RDF data on con-
strained devices.

4.2.2 Serializing RDF on the Embedded Web

Until today, a larg part of research towards storing and querying RDF
has focused on very large, static datasets stored on powerful ma-
chines, sometimes involving parallel computation. In contrast, stor-
age mechanisms for resource-constrained devices remain mostly un-
explored. Until recently, no realistic use case could be found where
computational devices had limited resources but still IP connectivity.

The first work that addressed constrained devices is part of SPIT-
FIRE and is called the Wiselib TupleStore [53]. Built on top of Wiselib,
a substitute to the C++ standard library designed for embedded sys-
tems, the Wiselib TupleStore internally stores IRIs in a tree-shaped
data structure to compact them. In SPITFIRE, the Wiselib TupleStore
was ported on wireless motes, similar to those used for the Intel Labs
sensor network, and RDF graphs were serialized in a binary format
called SHDT [52], a streaming (and simplified) version of the Header-
Dictionary-Triples (HDT) format.

The original objective of HDT was to compact large RDF datasets
e.g. to fit in the main memory of a personal computer. But as a bi-
nary format, its compression scheme could reasonably be used on
small datasets as well. An HDT document is divided into three sec-
tions containing respectively metadata (Header), resource IRIs (Dic-
tionary) and the triples themselves, indexed by subject (Triples). Al-
though most RDF stores also implement a similar partitioning, HDT

2 https://datatracker.ietf.org/wg/6lowpan

3 https://irtf.org/t2trg

https://datatracker.ietf.org/wg/6lowpan
https://irtf.org/t2trg
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is not designed for complex query processing (which usually involves
multi-indexing) but rather for unidirectional serialization [35]. HDT
datasets are rarely deserialized. One can also add the comment that
the header section is optional, thus of little interest in the present
context.

In the original proposal for HDT, all triples are merged in an single
array while separations between them are stored in a bitmap, eas-
ily compressible. HDT achieves high compression ratios compared to
classical compression schemes like gzip. An alternative triple index-
ing method was also proposed, performing vertical partitioning with
k2-tree compression (k2-triples) [38]. k2-triples achieves better com-
pression ratios while efficiently processing predicate-bound triple pat-
tern matching queries.

Example 19. Let us illustrate the (original) HDT and the k2-triples serial-
izations on the room example of last chapter with wall orientation (Ex. 6).
Let us assume the following canonical form for this example (without blank
node):

legoland:Site[

hasSpace → 31.638:Space[

containsElement → southWall:Wall[

hasOrientation → south,

hasSubElement → radiator1:Radiator

] and eastWall:Wall[

hasOrientation → east,

hasSubElement → radiator2:Radiator

]

]

].

The corresponding dictionary is as follows (in lexixographic order):
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1 31.638

(individual names occuring at
least twice)

2 eastWall

3 radiator1

4 radiator2

5 southWall

6 legoland (other individual names)

6 east

(class names and individual
names occurring only as

value)

7 south

8 Radiator

9 Site

10 Space

11 Wall

1 rdf:type

(property names)
2 containsElement

3 hasOrientation

4 hasSpace

5 hasSubElement

The triples section for HDT is composed of two integer streams for prop-
erties (including rdf:type) and values:

Properties 1 2 0 1 3 5 0 1 0 1 0 1 3 5 0 1 4

Values 10 0 2 5 0 11 0 6 0 4 0 8 0 8 0 11 0 7 0 3 0 9 0 1

These streams must be read as follows: start by a dictionary look-up and
take the first available individual (1 – 31.638); then read the first integer in
the properties stream (1 – rdf:type) and read every integer in the values
stream until 0 is found (10 – Space); read the next integer in the properties
stream (2 – containsElement) and read the values stream until 0 is found
(2 5 – eastWall, southWall); repeat until 0 is found in the properties stream;
take the next individual in the dictionary (2 – eastWall); repeat until both
streams are empty.

The k2-triples serialization indexes triples by properties instead of indi-
viduals. For each property appearing in the RDF graph, a bitmap like the
following is constructed (here, for containsElement):
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0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rows correspond to individuals and columns are values for the containsE-
lement property. Matrix indices are given by the same dictionary as for HDT,
with “padding” to the closest power of two. Here, 31.638 (first row) contains
the elements eastWall (second column) and southWall (fifth column). Com-
pression is achieved by spatially dividing the bitmap in four squares and
reducing uniform parts to a single bit, as follows:

1000 1100 1000 1000 0100 1000

The first four bits (1000) encode whether each 8× 8 square of the bitmap is
uniform (0) or not (1) in the following order: top left, top right, bottom left,
bottom right. For each non-uniform square, read the next four bits (1100)
encoding the same information for sub-parts of size 4× 4; repeat with sub-
parts of size 2 × 2. This data structure, called k2-trees is, often used to
compress geo-spatial data. In the present example, only two squares of size
2× 2 are not uniform. The rest can be serialized in a couple of bits.

HDT and k2-triples show excellent results in terms of compres-
sion and query processing speed (for simple queries). However, a
recent study suggests that there exists a better alternative for small
datasets and suitable for embedded devices [71]. The study presents
datasets of semantically annotated sensor measurements where an
EXI serialization of RDF/XML data is more compact than HDT. The
two approaches (EXI and HDT) have been combined in a proposal
called Efficient RDF Interchange (ERI) [34], which, however, primarily
addresses data streams with time considerations, which are not of
relevance here.
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More recently, an RDF store prototype following similar principles
was introduced, with special care given to loading secondary storage
data into RAM for efficient query processing with a limited amount of
RAM [75]. However, this prototype called RDF for Lightweight Edge
Devices (RDF4Led), still targets higher classes of devices than what is
considered in this thesis, with typically 512 MB to 1 GB RAM.

Finally, an interesting work worth mentioning is the Linked Data
Platform (LDP) specification [113] and its mapping to CoAP [83]. LDP
is a Web architecture to expose RDF graphs in a resource-centric way,
where assertions about individuals can be separately retrieved via
a Web interface by dereferencing each individual’s IRI. Constrained
node networks are seen as one of the application fields of LDP (over
CoAP) for this architecture offers a means to exchange low amounts
of data at once regardless of the serialization format [7]. However, we
will see in Sec. 4.4 that LDP on constrained nodes proved impractical
due to higher costs for data exchange than for local query processing.

Table 9, in addition to what we have just discussed, includes Em-
bedded Web equivalences for JSON-LD and SPARQL. These contribu-
tions to the state-of-the-art are my own, although they are based on
the technologies that were presented in this review. Both contribu-
tions rely on a formalization of the JSON-LD data model at the basis
of the µRDF store. This formalism is presented next.

4.3 the µrdf store : rdf on micro-controllers

The µRDF store is an embedded RDF store designed to store asser-
tions in the main memory of an MCU, as well as to query and update
these assertions. It is based on a binary object notation for RDF suffi-
ciently compact to fit in a small segment of RAM. This notation also
inspired the human-readable notation used in the examples of this
thesis.

We can already observe both in the DL notation of the thesis and
the HDT serialization format that triples are “factorized” by individ-
ual and then by property. This practice is very common and it is at
the basis of Turtle, the Terse RDF Triple Language. It is also the basis
for an object representation of triples which greatly facilitates the in-
tegration of the RDF data model with object-oriented programming
languages. This representation was recently standardized as JSON-LD

[114]. Both Turtle and JSON-LD allow for prefix declarations, which
greatly reduce the size of a serialization, but JSON-LD even allows
full IRIs to map to arbitrary character strings. It then becomes possi-
ble to compact IRIs in an RDF graph by defining a proper mapping
to all the IRIs it contains. Such a mapping is called a JSON-LD con-
text. A formalism for context-based compaction is presented in the
following.
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This formalism and the compaction experiments that were con-
ducted alongside were first published in June 2018 [23]. To the best of
my knowledge, it was the first attempt to formalize (parts of) JSON-
LD. This work was significantly extended since then.

4.3.1 JSON-LD Expressions and Semantics

The DL notation of the thesis is borrowed from F-logic, an exten-
sion of FOL for object-oriented programming [65]. FOL defines terms
and formulas. F-logic extends the definition of formulas to include
class membership (:) and property/value pairs ([. . . ]). NC, NP, NI re-
spectively denote the mutually disjoint sets of class names, property
names and individual names and V , the set of variables (equivalent
to blank node identifiers). U then refers to the set of UTF-8 strings.
Necessarily, we have (NC ∪NP ∪NI) ∪ V ⊂ U, since every IRI is also
a character string, and (NC ∪NP ∪NI)∩ V = ∅.

Definition 12. Let t ∈ U and t ′, t1, . . . , tn ∈ U \ V . A JSON-LD expres-
sion is a formula of the form

t:t ′[t1 → f1, . . . , tn → fn].

such that f1, . . . , fn are conjunctions of JSON-LD expressions. A JSON-
LD graph is a set of JSON-LD expressions.

Several examples of JSON-LD formulas have already been given
in this thesis. If we exclude existential restrictions, Def. 3 is a special
case of the present definition, where t, f1, . . . , fn are restricted to in-
dividual names and t ′ to a single class name. Moreover, in Exs. 5 &
6, variables (or blank nodes) were omitted since they appeared only
once in the formula: their position in the formula is enough to iden-
tify them.

We denote F the set of all formulas defined by Def. 12. One can
already observe that not all f ∈ F has a corresponding RDF repre-
sentation, since terms may not be IRIs. This can be alleviated if we
introduce the notion of JSON-LD context.

Definition 13. A JSON-LD context is a function c : U 7→ NC ∪NP ∪NI ∪
V such that for all term t ∈ NC ∪NP ∪NI ∪ V , we have c(t) = t and c is
an injection (for all t, t ′ ∈ U distinct, we have c(t) 6= c(t ′)).

The expand procedure defined for a JSON-LD expression f and a context
c is the application of c on all terms of f. The compact procedure is the
reverse transformation, i.e. such that compact(expand(f, c), c) = f.

In Def. 13, restrictions apply to c for the sake of simplicity, so that
expand and compact are exactly the inverse of each other. However,
these two procedures as defined by the JSON-LD W3C standard do
not have this restriction [82]. In the present definition, RDF literals
are also ignored as they are of lesser relevance here.
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Example 20. Every example given so far (including in Ch. 3) is in fact a
compacted form of some expression only with IRIs. For instance, Ex. 19 is
the compacted form of the following expression:

<tag:legoland>:bot:Site[

bot:hasSpace → <tag:31.638>:bot:Space[

bot:containsElement → <tag:southWall>:ex:Wall[

ex:hasOrientation → <tag:south>,

bot:hasSubElement → <tag:radiator1>:ex:Radiator

] and <tag:eastWall>:ex:Wall[

ex:hasOrientation → <tag:east>,

bot:hasSubElement → <tag:radiator2>:ex:Radiator

]

]

].

Recall that tag: is a URI scheme (Table 6) while bot: and ex: are names-
pace prefixes, i.e. shorthands for full IRIs (Table 13).

In fact, one single context c can be defined for the whole thesis,
such that every class, property or individual name defined in an on-
tology under a certain namespace is represented in a compacted way
by its local name (without namespace). A definition of c is given in
Appendix B. For a finite set of ontologies, processing a JSON-LD ex-
pression that includes only IRIs or its compacted form is semantically
equivalent, as per the following definition:

Definition 14. Let f be a JSON-LD expression. Let c be a JSON-LD context
and f ′ the JSON-LD expression such that f ′ = expand(f, c). We say that
an interpretation I contextually satisfies f and write I |=c f if:

• f ′ is a DL expression as per Def. 3
• I |= f ′ as per Def. 4

Let G be a JSON-LD graph. We also have I |=c G if for all f in G, I |=c f.

Definition 14 allows one to abuse notation throughout this thesis.
Indeed, it immediately follows that for all DL expression f, if I |=c

compact(f, c), then we have I |= f and both notations (compacted and
expanded) can be used interchangeably for a fixed context. The JSON-
LD semantics are consistent with the well-defined RDF semantics [48,
54]: JSON-LD and RDF graphs that are syntactically equivalent are
also equivalent semantically.

Now, we can also think of a context that minimizes the size of all
strings in an expression, with no care for human-readability. That is,
it is always possible for a fixed set of IRIs N to construct a context
cmin that maps the shortest |N| UTF-8 strings to elements of N.
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Example 21. Let us take Ex. 20 again.We have:

N = {<tag:legoland>, bot:Site, bot:hasSpace, <tag:31.638>, . . .}

from which cmin can be constructed. The output of compaction with cmin

is the following:

a:b[c → d:e[f → g:h[i → j, k → l:m] and n:h[i → o, k → p:m]]].

One can already notice that the above example is close to the HDT
format. Besides discrepancies in indexing IRIs, the main difference
is that HDT does not have any form of “nesting” formulas in one
another. To get even closer to HDT, flattening, the last transformation
defined by the JSON-LD processor specification, is now introduced
[82].

Definition 15. The flatten procedure defined for a JSON-LD expression
f is the construction of a JSON-LD graph G = flatten(f) such that:

• for all I, c, we have I |=c f if and only if I |=c G

• for all f ′ ∈ G, of the form t ′:t ′′[t ′1 → f ′1, . . . t ′n → f ′n] as per Def. 12,
f ′i is a conjunction of terms for i ∈ [1,n] (no nesting)

Example 22. The result of applying flatten to Ex. 21 is as follows:

a:b[c → d].

d:e[f → g and n].

g:h[i → j, k → l].

l:m.

n:h[i → o, k → p].

p:m.

The last step towards a binary representation of JSON-LD expres-
sions is to turn string-based tokens into numeric tokens to then be
efficiently serialized in a binary format, like those mentioned in Sec.
4.2 (EXI4JSON, CBOR).

Example 23. If we replace the string-based tokens {:, [,→, ,, ], and} with
numeric tokens (e.g. 1, 2, 3, 4, 5, 6) in the flattened expression of Ex. 22, we
obtain:

a 1 b 2 c 3 d 5 6

d 1 e 2 f 3 g 6 n 5 6

g 1 h 2 i 3 j 4 k 3 l 5 6

l 1 m 6

n 1 h 2 i 3 o 4 k 3 p 5 6

p 1 m
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One can note that the HDT representation of Ex. 19 is shorter than
that of Ex. 23 (42/53 symbols). However, HDT must also include the
dictionary (at least 11 symbols) to correctly deserialize the properties
and values streams. In contrast, a context cmin can be defined globally
so that it is shared by all servients involved in a WoT system, which
relieves them from sending the context every time JSON-LD expres-
sions are exchanged. In practice though, cmin cannot be as optimal
as the context defined in Ex. 21, which is specific to a single formula.
Instead, it can be constructed from the vocabulary contained in a
fixed CBox C, that is NC

C ∪ NP
C ∪ NI

C. Finally, one can also note that
a binary serialization of nested expressions (like Ex. 21) would be
even smaller in size, as opposed to a flattened form. However, I em-
pirically observed that the impact on compaction was not significant
while a flattened form greatly facilitates the processing of serialized
JSON-LD.

Later in this chapter, experimental results on the performances of
this compaction technique based on a minimal context will allow one
to have a more formal discussion on these aspects (Sec. 4.4). Before
that, we can move to the details of the µRDF store’s query answering
capabilities, which are based on JSON-LD framing. The underlying
principle is that queries (JSON-LD frames) are themselves JSON-LD
expressions and can therefore be stored efficiently as well, so that
there is enough RAM left to store intermediate results.

4.3.2 JSON-LD Frame Matching

JSON-LD framing is not part of the official W3C recommendation.
The formalism presented in the following is based on the latest com-
munity draft for JSON-LD 1.1, as of December 2017 [115]. JSON-LD
framing includes two aspects: frame matching and re-shaping, anal-
ogous to SPARQL’s SELECT and CONSTRUCT query types. In the
following, we will only consider frame matching, which is very simi-
lar to DL query entailment.

Definition 16. Let G be a JSON-LD graph and F another JSON-LD graph
referred to as a frame. Let c be a JSON-LD context and G ′,F ′ JSON-LD
graphs such that f ∈ G if and only if f ′ = expand(f, c) ∈ G ′, as well as
f ∈ F if and only if f ′ = expand(f, c) ∈ F ′. We say that G contextually
entails (or matches) F and write G |=c F if G ′ |= F ′ as per Def. 5.

In the W3C specification, framing also includes disjunctions, via a
‘require all’ flag, while the present definition only includes conjunc-
tions of expressions. Every query involving both constructs can al-
ways be turned into a normal form, i.e. a disjunction of conjunctions.
In my original formalization of JSON-LD, I showed that this normal-
ization can be performed in polynomial time [23]. We can therefore
leave this aspect aside.
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Moreover, in the W3C specification, frames can also include special
variables, ’none’ and ’wildcard’, which are meant to match respec-
tively none of the JSON-LD expressions and all of them. However,
introducing these variables in the present formalism presents two is-
sues. First, it would require including negation in formulas, which
was explicitly left aside in the previous chapter. Second, correct se-
mantics for JSON-LD framing would come with the assumption that
any assertion that is not in G is false. However, DL semantics usually
has a more permissive behavior towards absent assertions: it only con-
siders them as undefined. They are respectively known as the Closed
and Open World Assumptions. To avoid mixing both in the same
formalism, ‘none’ and ‘wildcard’ were left aside.

To conclude with theoretical considerations, we would need an in-
sight into the complexity of JSON-LD frame matching. Since JSON-
LD and RDF are equivalent representations, the entailment problem
of Def. 16 has the same complexity as RDF conjunctive query entail-
ment: it can be solved in polynomial time for the data complexity
[48]. It then follows that query answering, the problem of finding all
substitutions for a frame (or its equivalent CQ), can also be solved
in polynomial time, as it can be reduced to query entailment after
substituting variables in a CQ to all individuals in the graph.

The match procedure (Alg. 2) computes all answers for some input
graph G and a frame F. Both inputs must be flattened graphs, i.e. the
result of applying flatten to all of the expressions they include. The
answers returned by match are mappings, which are partial functions
defined in a set-theoretical fashion.

Definition 17. [48] A mapping µ is a partial function whose domain, de-
noted dom(µ), is a subset of V (the set of variables) and whose codomain is
U (the set of UTF-8 strings, including variables).

Let µ1,µ2 be mappings. If for all x ∈ dom(µ1) ∩ dom(µ2), we have
µ1(x) = µ2(x), then the union of µ1,µ2, denoted µ1 ∪ µ2, is the mapping
µ such that dom(µ) = dom(µ1)∪ dom(µ2).

Let µ∅ be the mapping such that dom(µ∅) = ∅. For all µ, µ∅ ∪ µ = µ

Mappings were first introduced to define an algebra for SPARQL
[48] but it is also a convenient tool to define frame matching. Con-
structing mapping unions is analogous to performing joins in rela-
tional databases. Here, matching consists in joining solution sets ob-
tained by applying matchExpression on G for each (flattened) ex-
pression in F. The map procedure, defined for two JSON-LD expres-
sions f and f ′, returns a set of mapping Ω such that for all µ ∈ Ω,
dom(µ) is the set of variables in f and the expression obtained by
replacing all x in f with µ(x) is included in f ′. It is easy to see that if
map(f, f ′) 6= ∅, then {f ′} |=c {f} for all c. This property guarantees the
correctness of Alg. 2.

As one can note, JSON-LD framing can be computed regardless of
the context. In particular, matching can done on frames and graphs
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Algorithm 2 Frame matching algorithm for a flattened graph G and a
flattened frame F.

1: function match(G, F) . join mappings between expressions
2: if F = ∅ then
3: return {µ∅}

4: else
5: Let f ∈ F be some expression
6: Let Ω = match(G,F \ {f})

7: Let Ω ′ = matchExpression(G, f)
8: for all µ ∈ Ω do
9: Ω := Ω \ {µ}

10: for all µ ′ ∈ Ω ′ do
11: if µ ′′ = µ∪ µ ′ is a mapping then
12: Ω := Ω∪ {µ ′′}
13: end if
14: end for
15: end for
16: return Ω
17: end if
18: end function
19: function matchExpression(G, f) . match single expression
20: if G = ∅ then
21: return ∅
22: else
23: Let f ′ ∈ G be some expression
24: Let Ω = map(f, f ′)
25: return Ω∪matchExpression(G \ {f ′}, f)
26: end if
27: end function
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compacted with cmin, such that MCUs can exchange and store com-
pacted forms only. I implemented the µRDF store on this basis. In
case the input frame F and the input graph G are compacted with
different contexts c and c ′, frame matching may return false positive.
However, it is always possible to compute a frame F ′ such that f ∈ F

if and only if f ′ = compact(expand(f, c), c ′) ∈ F ′. This operation
may be too costly for MCUs if c or c ′ are large. It can be assumed
that this “context switching” operation is done on an unconstrained
machine that acts as intermediary in cross-domain applications.

4.4 evaluation

The main objective behind this formalization of JSON-LD is to pro-
vide a representation for RDF that could be stored and processed
by MCUs. Although this approach does not make particular assump-
tions about the nature of assertions to be stored and processed, the
evaluation exposed next concentrates on assertions likely to be found
in TD document to drive WoT-related applications. All datasets and
context files can be found online4. In the following, the expression
‘µRDF store’ refers to the computer program to manage compacted
JSON-LD data.

The performances of JSON-LD compaction were first evaluated in
comparison to the state-of-the-art on WoT-related datasets and then
applied to semantic discovery, on the water management use case of
last chapter. Results of this evaluation are provided next (Secs. 4.4.1
& 4.4.2). Finally, a benchmark that was designed for JSON-LD frame
matching and tested on the µRDF store is introduced (Sec. 4.4.3).

4.4.1 Binary JSON-LD & Compaction

4.4.1.1 Approaches & Dataset Description

As underlined in Sec. 4.2, the state-of-the-art in binary formats for
RDF includes two main approaches: HDT (in its two variants) and
RDF/EXI. JSON-LD compaction allows for a third alternative: encod-
ing JSON-LD in its compacted form (using a global context) in a bi-
nary JSON format. The binary formats that were selected for these
experiments are EXI for JSON (EXI4JSON) and CBOR. EXI4JSON is an
extension of EXI to represent JSON documents in binary XML [92].

As mentioned in Sec. 4.3.1, building a minimal context is some-
what arbitrary. For instance, one could choose either to include all
ontological concepts exposed on the Semantic Web in a single con-
text or tailor an application-specific context covering a limited set of
ontologies (a CBox). In the experiments, two contexts were generated
for every dataset: the “optimal” context cmin constructed from the

4 https://github.com/vcharpenay/urdf-store-exp/

https://github.com/vcharpenay/urdf-store-exp/
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btcsample node ssp desigo

|A| 174 73 4859 84908

|NI
A| 174 26 1345 21527

n, s.t. A =
⋃n

i Ai - - 313 1843

avgi(|Ai|) - - 15 70

mini(|Ai|) - - 13 5

maxi(|Ai|) - - 19 662

Table 10: Statistics on datasets designed for compaction experiments; |A| de-
notes the number of type and property statements (i.e., triples) in
ABox A while |NI

A| is the number of distinct entity names in A

IRIs included in the dataset only (for comparison purposes) and a
context generated from all IRIs included in the Web ontologies ref-
erenced by the dataset. Compaction using the latter context will not
perform as good as with the optimal context but it better estimates
the performances one should expect in a production environment.

As a result, seven approaches were compared: (1) HDT, (2) k2-triples,
(3) RDF/EXI, (4) EXI4JSON, (5) CBOR, (6) EXI4JSON with an optimal
context and (7) CBOR with an optimal context.

The compaction performances of the seven approaches were com-
pared on four data sets: a sample from the Billion Triples Challenge
(BTCSAMPLE), a single sensor measurement (NODE), the output of a
proxy service for sensor data (SSP) and an export of a building model
from the Siemens Desigo CC platform (DESIGO). The first three data-
sets were provided by Hasemann et al. in the context of SPITFIRE [53].
The last one was added to provide a comparison on real-world data,
exported from a production environment. Statistics on these datasets
are given in Table 10.

The BTCSAMPLE dataset includes 174 random assertions from a
large social network. Each individual object has a single property. IRIs
reference a large variety of ontologies, such as FOAF, GeoNames[118]
or the Simple Knowledge Organization System (SKOS) [86]. The main
purpose of BTCSAMPLE as a test set is to evaluate how the different
approaches perform on IRI compaction, regardless of the data struc-
ture.

In contrast to BTCSAMPLE, NODE and SSP mostly use SSNX to ex-
press the semantics of sensor measurements, along with QUDT and
SWEET for quantity kinds and units. NODE is a small dataset pro-
duced by one single sensor while SSP includes the measurements of
hundreds of sensing devices. The latter shows many redundances in
the data. Both NODE and SSP are realistic WoT datasets.

The last dataset, which is denoted DESIGO, was generated from
a simulated building managed by the Siemens Desigo CC platform,



4.4 evaluation 89

at a real scale. The data is exported from Desigo CC as a collection
of TD documents that encapsulate properties like room temperature
and sensor readings, actions like start/stop command on ventilation
or events like fire alarms. The ontologies referenced by these TD doc-
uments are an OWL export of the Desigo data model, which is an
object-oriented model close to BACnet, and SAREF.

The dataset, which includes around 10,000 data points, is the sum
of 1843 interlinked TD documents. Because TD documents are meant
to be individually exposed by WoT servients, DESIGO was consid-
ered both as a whole and as an aggregation of separate documents,
individually compacted and serialized. Similarly, SSP is an aggre-
gation of individual sensor measurements, stored independently on
hundreds of sensors. After looking at compaction on whole datasets,
the “piecewise” distribution of datasets were considered, where each
piece is theoretically managed by a distinct servient.

4.4.1.2 Results

Results are shown on Fig. 15. What the results first show is that k2-
triples, although highly efficient on large datasets, performs poorly
on small ones: on NODE, the size for k2-triples is 16kB while all oth-
ers remain under 3kB. Moreover, on all datasets, RDF/XML is out-
performed by other approaches. In particular, it is outperformed by
HDT, contrary to what earlier results suggested [71]. The difference
in performances most likely rests on the fact that EXI performs good
on datasets with many non-string literals (e.g. numeric sensor values),
which happens not to be the case in these datasets. It is interesting to
note, however, that EXI performs better than CBOR on compressing
redundant structures (as in SSP).

HDT was originally designed to compress very large datasets but it
also performs good on medium size datasets, like SSP and DESIGO. It
is more than twice as performant as EXI4JSON and by far better than
CBOR (which is consistently outperformed by EXI4JSON). However,
on the small NODE dataset, EXI4JSON and HDT have comparable
results, regardless of the context used. The results on BTCSAMPLE
illustrate the impact of choosing a context on the overall compaction
performances: the optimal context allows for 37% compaction com-
pared to the ontology-based context (5409 kB / 8639 kB). Indeed, the
higher the variety of IRIs used in an application, the more arduous it
is to design a context that fits.

JSON-LD compaction shows best results on datasets of less than
hundred triples, the typical size of a TD document stored by a con-
strained WoT agent. Figure 16 show how EXI4JSON and CBOR are
more efficient than HDT on SSP and DESIGO, when pieces of data
are serialized separately (using the same ontology-based context). For
median results on DESIGO, EXI4JSON and CBOR achieve a com-
paction ratio of 58% and 50% compared to HDT (respectively). Com-
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Figure 15: Size of datasets serialized in compact binary formats; datasets are
considered as a whole

paction ratios on SSP are similar: 62% and 59%. Interestingly, CBOR
performs better on median results but it shows a higher variance
than EXI4JSON. One can also note that the DESIGO dataset appears
skewed towards small TD documents. The reason is that many TDs
in the dataset are logical entities, with no explicit affordance attached
to them (and thus with only few assertions). It is the case for e.g.
buildings, floors and rooms.

The overhead of HDT on small datasets is due to the dictionary
it embeds in every individual document (mostly redundant). Strictly
speaking, the principle of defining a global context for a set of doc-
uments could also apply to HDT dictionaries. However, splitting a
dictionary into global and local parts would lower the compaction
ratio and require decompression on the MCU before processing (e.g.
to match a JSON-LD frame).

4.4.2 Semantic Discovery Exchanges

Observing that EXI4JSON consistently outperforms other serializa-
tion formats for small datasets, it was chosen for the semantic dis-
covery experiments of last chapter (Sec. 3.4). In both use cases (Intel
Labs and water management), MCU servients exchange ABox asser-
tions with a TDir instance. A possible indicator to look at are payload
sizes in these exchanges when assertions are serialized in EXI4JSON
over CoAP. The first exchange required for discovery is the registra-



4.4 evaluation 91

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200
HDT

EXI4JSON
CBOR

(a) SSP

 0

 2000

 4000

 6000

 8000

 10000

 12000
HDT

EXI4JSON
CBOR

(b) DESIGO

Figure 16: Distribution of size values for sets of individual documents seri-
alized in compact binary formats; datasets are considered as an
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tion of all TD documents stored by servients on the TDir. Registration
can either happen by POST requests sent by individual servients to the
TDir or by a GET request broadcast by the TDir to all µRDF store in-
stances in the network. After query answering terminates, the TDir
must send update ABoxes back to the servients, as per Definition 10.
Updates are performed as PUT requests sent by the TDir to each µRDF
store.

In the Intel Labs use case, the only difference across mote descrip-
tions is their location, which accounts only for a few bytes when seri-
alized. Provided a minimal context with schema.org and BOT terms,
the EXI4JSON serialization of a mote TD document is of 80 bytes only
(in average). However, because of large fully connected components
in the graph of interactions, the udate ABox a mote receives is of
(maximum) 419 bytes. It is interesting to note that if every mote in-
volved in the biggest connected component (16 nodes) only receives
419 bytes, the TDir sends 16 times this amount of data, which is en-
tirely redundant. However, after discovery, each mote is autonomous
insofar as it can choose with which other mote to communicate. This
self-organization property is crucial in sensor network applications.

Fig. 17 shows payload sizes for the water management use case.
In the case where a servient provides affordances to more than one
‘thing’ (as for IPs 192.168.2.198 and 192.168.2.199), TD documents are
merged and sent in a single payload. The JSON-LD context used here
was constructed from eCl@ssOWL, schema.org, OM, SOSA and SSN.
By comparing the two histograms, we can see that the size of up-
dates is comparable to the size of the original TD documents. Since
servients discover interactions with one or two other servients only
(Fig. 14), they turn out to roughly exchange each other’s TD docu-
ments. All payload sizes fit in a single CoAP block (of maximum size
of 1,024 bytes), which represents no technical challenge for MCUs like
the ESP8266.
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Figure 17: Size of ABox assertions exchanged between servients and Thing
Directory, serialized in EXI4JSON; servients are identified by their
IP address

4.4.3 JSON-LD Framing Benchmark

After discovery terminates, MCU servients should be able to query
their own knowledge base to select potential interaction partners, e.g.
with the query x[relatesToProperty → z] and y[relatesToProperty → z].
It is unrealistic to consider full reasoning support on an MCU, as un-
derlined in introduction to this chapter. However, the ESP8266 could
perform simple pattern matching without inference, provided that as-
sertions are already "materialized" in its local knowledge base. With
this in mind, a procedure for JSON-LD frame matching can be for-
malized, as shown in Alg. 2. This aspect is evaluated next on a bench-
mark.

There exists several benchmarks for the related problem of SPARQL
query answering. Among them, the most cited are the Lehigh Uni-
versity Benchmark (LUBM) [47] and the Berlin SPARQL Benchmark
(BSBM) [10]. The former focuses on query answering with OWL while
the latter was tailored to evaluate scalability on a very large dataset.
Both provide synthetic dataset generators that can be adapted to the
needs of the thesis, to generate (small) datasets comparable to those
used in the semantic discovery experiments. Because most BSBM
queries are of lesser interest on datasets of less than a million as-
sertions, it was chosen to evaluate frame matching against LUBM, on
a dataset of 529 triples.

LUBM is composed of a query mix of 14 queries of various com-
plexity to retrieve information about universities, students, faculty
members and lectures. Queries also have different selectivities. For
instance, Q2 is designed not to return any answer while Q5 has many
answers (low selectivity). All queries but two (Q6, Q14) involve join-
ing intermediate results, what was called complex queries earlier in
the thesis. A documentation of the whole benchmark can be found
online5. For each query, the size of both the query and the answer was
first computed, when serialized in EXI4JSON, and then was recorded

5 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/
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|Ω| query (bytes) answer (bytes)

Q1 1 108 165

Q2 0 98 0

Q3 4 112 447

Q4 0
∗

137 0

Q5 32 91 2458

Q6 26 43 1826

Q7 15 138 1652

Q8 0
∗

116 0

Q9 3 100 603

Q10 1 108 165

Q11 1 79 119

Q12 0
∗

101 0

Q13 0
∗

84 0

Q14 18 43 1304

Table 11: Size of LUBM queries (frames) and answers (substitutions) serial-
ized in EXI4JSON on a small synthetic dataset; because of its small
size, the LUBM generator omits assertions in the dataset such that
certain queries (marked with *) have no answer

the number of intermediate results (i.e. of mappings) during the exe-
cution of Alg. 2. The hypothesis is that all these quantities be reason-
ably lower than the total amount of RAM available in the chip.

Table 11 shows the size of serialized queries and answers. Queries
are JSON-LD frames as per Def. 16 while answers are obtained by
applying mappings returned by match to an input frame. More pre-
cisely, answers correspond to the union of all “contextual” substitu-
tions for the input frame (Def. 6). Both queries and answers are there-
fore JSON-LD graphs and can be serialized as described in earlier
experiments in Sec. 4.4.1. LUBM includes an OWL ontology, which
was used to generate a minimal context. As suggested by previous
results, EXI4JSON was taken as serialization format.

The first thing we can observe on Table 11 is that all queries take a
reasonable amount of RAM (6 200B) in comparison to typical RAM
resources on MCUs (8 to 64kB), which means that the entire frame
can be loaded into memory before the algorithm starts. With this
observation, we empirically confirm the relevance of data complexity
analysis, which assumes that queries are bounded in size.

The size of the answers for e.g. Q5 is high and serializing it entirely
in RAM would not always be feasible. If these answers are to be ex-
changed between constrained servients, a streaming approach must
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Figure 18: Evolution of the number of intermediate results over the execu-
tion of Alg. 2 for LUBM queries on a small synthetic dataset

be taken, like CoAP block-wise transfer [14]. However, throughout
the execution of frame matching, a high number of mappings may
be necessary to output the correct answer. This is the case with Q9

which contains three variables. To study the feasibility of complex
frame matching, we should have a look at the evolution of the num-
ber of intermediate mappings generated by Alg. 2. The result for all
LUBM queries is shown on Fig. 18. What comes out of this figure
are sharp drops, particularly on Q9, which correspond to mappings
generated by matchExpression that are filtered out when joining
with incompatible mappings. While processing Q9, there can be up
to three times more intermediate results than actual answers. In the
worst case, matchExpression can generate |NG|

|VF| mappings, where
|NG| is the number of IRIs in the input graph and |VF | the number
of variables in the input frame F. All these mappings must be tem-
porary stored in RAM. Given that LUBM queries have at most three
variables, this upper bound for the present benchmarked dataset is of
196

3 = 7,529,536 mappings. As Fig. 18 shows, actual numbers do not
follow this exponential relation between graph, query and answers.
This benchmark suggests that frame matching, and thus a certain
level of autonomy in terms of knowledge management, is generally
doable on MCUs.

My original implementation of the µRDF store was in the C pro-
gramming language and targeted specifically the ESP8266 platform
[9, 22]. It was demonstrated at ESWC 2017 in the form of a chat appli-
cation with the MCU [22]. With this implementaton, frame matching
terminates in less than 10ms for all queries of the LUBM query mix.
As a comparison, the CoAP Round-Trip Time (RTT) for these datasets
on the ESP8266 is of several orders of magnitude higher. RTT is de-
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fined as the total elapsed time starting when the first bytes of data
are sent by the server until the client acknowledges reception of the
whole dataset. To see the evolution of the CoAP RTT over the pay-
load size, LUBM datasets of various sizes were generated. Results are
shown on Fig. 19. We can observe a polynomial pattern with respect
to the size of the dataset (from which directly depends the size in
bytes of the message) but we can also see that all RTTs are above
100 ms, several orders of magnitude more than execution times to
match frames locally. What follows from this observation is that LDP
is no reasonable alternative to local querying on MCUs. It would in-
deed require to exchange all intermediate results over CoAP: query
processing time would be generally high, hence high power consump-
tion.

This observation also motivated the implementation of a second
version of the µRDF store which would be more portable yet less
performant. This second implementation, available online6, complies
to the ECMAScript 5.1 specification (a dialect of JavaScript) and can
therefore be executed on MCUs via the JerryScript runtime7. Fig. 18

was compiled using this second version of the µRDF store.

4.5 summary

In this chapter, we got interested in the feasibility of exchanging TD
documents in embedded environments, typically composed of MCUs
interconnected in an IP network. It was first reported on the on-
going effort to port Web technologies to such environments, what is
called the Embedded Web in the literature. These technologies include
e.g. CoAP, EXI and CBOR, respectively inspired by HTTP, XML and

6 https://github.com/vcharpenay/uRDF.js

7 http://jerryscript.net

https://github.com/vcharpenay/uRDF.js
http://jerryscript.net
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JSON. Binary formats for RDF have also been proposed, like HDT
and RDF/EXI. Was then introduced the µRDF store, an embedded
RDF database designed for MCUs. WoT servients can store locally
TD documents in a µRDF store, update them and run queries against
them.

My implementation of the µRDF store is based on a JSON format
for RDF standardized by the W3C, called JSON-LD. The chapter intro-
duced a new formalism for JSON-LD compaction and framing, which
can be used to efficiently exchange and query RDF documents. On
the one hand, JSON-LD compaction consists in mapping class, prop-
erty and individual names to arbitrary UTF-8 strings as defined in a
context. If a context is globally defined, any JSON-LD document can
be sent in its compacted form, without context. On the other hand,
JSON-LD framing is an alternative to SPARQL that can be directly
performed on compacted documents. In Alg. 2, the classical SPARQL
pattern matching algorithm was re-written in JSON-LD terms.

It was experimentally showed that JSON-LD compaction is more ef-
ficient than HDT and RDF/EXI in compacting TD documents, when
binary formats for JSON are used (EXI4JSON, CBOR). Compaction
was tested it on two datasets, taken from the SPITFIRE research project
(weather stations) and the Siemens Desigo CC integration platform
for BA systems. When all TD documents available in SPITFIRE of
Desigo are merged, HDT remains the most efficient but when they
are taken individually, JSON-LD compaction with EXI4JSON proved
the most efficient, in average. The semantic discovery experiments of
Sec. 3.4 was then reconsidered, to then apply EXI4JSON on the as-
sertions being exchanged (TD documents and update ABoxes). All
payloads can be sent in a single CoAP block, that is, efficiently be-
tween MCUs and a TDir. Finally, JSON-LD framing was tested on the
LUBM SPARQL benchmark, a synthetic benchmark dealing with uni-
versity datasets. The results we obtain from this benchmark indicate
that frame matching can be implemented on MCUs for a reasonable
cost in terms of RAM.

My µRDF store implementation was meant to be used in highly de-
centralized WoT systems in which servients are self-aware MCUs that
expose their capabilities (as TD documents) and organize by them-
selves: a servient initiates an interaction by querying its local µRDF
store to find suitable peers and then by following the hyperlinks these
peers expose. This way, each servient becomes a knowledge-base in-
telligent system capable of autonomy. Servients are also adaptive in-
sofar as servient interactions change as soon as the knowledge stored
in their own µRDF store instance is updated. An example of update
was presented in Ch. 3 in the context of semantic discovery (Def. 9).
One can also think of arbitrary updates whenever the context of a
servient changes (e.g. reconfiguration of a product line or new user
preferences in a building).
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C O N C L U S I O N & P E R S P E C T I V E S

5.1 theoretical & experimental results

The problem of this thesis was stated as the definition of formal se-
mantics for WoT given a graph model for interactions between WoT
servients. The general assumption was that knowledge graphs are
good foundations for this purpose: an edge in the graph of interac-
tions of a WoT system shall map to a path in a knowledge graph
describing the components of the system and their environment. The
most important aspects of the thesis can be summarized as follows:

• The W3C TD model proves a satisfactory basis to model ‘things’
and their properties when aligned with the SSN ontology, an-
other W3C standard. It was quantitatively showed that the TD
model, close to that of oneM2M, is compatible with most IoT
and industrial protocols (like BLE, BACnet or OPC-UA) with
respect to their data model. Moreover, SSN was showed to have
become the reference for Web ontologies used in the IoT. The
semantic alignment between the TD model and SSN therefore
captures most of both worlds. On this basis, an extensive and
consistent vocabulary to describe ‘things’ is available to anno-
tate TD documents and build knowledge graphs for WoT.

• The semantics of a WoT system were defined as the annotation
of edges in its graph of interactions with assertions found in
a knowledge graph describing the system. On this basis, one
can define various tasks like semantic discovery. A peculiarity
of knowledge graphs in WoT is that they likely include anony-
mous entities, whose existence can be stated but that cannot
be fully identified. The thesis contributes to the state-of-the-art
in query answering on such knowledge graphs by providing a
tractable skolemization algorithm that is sound and complete
for a well-defined fragment of OWL.

• At last, it was verified that WoT knowledge graphs can be con-
structed for any system, including systems composed exclu-
sively of constrained devices communicating in a peer-to-peer
fashion. For this purpose, is introduced a formalization of JSON-
LD, a serialization format for RDF that defines procedures for
compaction and framing (similar to SPARQL querying). It was
experimentally showed that JSON-LD compaction, when com-
bined with a binary JSON serialization like EXI4JSON and C-
BOR, is more efficient than the state-of-the-art. JSON-LD fram-
ing (on compacted documents) was also tested on a querying
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benchmark, showing that the procedure can reasonably be im-
plemented on constrained devices like MCUs, paving the way
to intelligent systems based on knowledge graphs and capable
of autonomy and adaptibility.

As mentioned in introduction, the thesis refers to knowledge graphs
from the point of view of standardized Semantic Web technologies
(RDF, SPARQL, OWL, JSON-LD). Standards designed for the Embed-
ded Web were also reused (EXI, CBOR). The use cases chosen for
experiments (Intel labs, water management) were specifically chosen
to be realistic enough to consider further implementation into prod-
uct quality software. In other words, the outcomes of this thesis come
with a certain level of technological maturity, which allows for a quick
technology transfer. In fact, parts of its conclusions are to be found in
the online documentation of the W3C TD ontology, which also pro-
vides guidelines on integrating Semantic Web technologies with its
WoT framework.

Nonetheless, the use of knowledge graphs for WoT, as is being ad-
vocating for in this thesis, relies on certain assumptions that deserve
closer evaluation. The following section revisits these assumptions
and suggests future work to evaluate their relevance. It only men-
tions issues specific to WoT, as opposed to limitations inherent to
knowledge graphs themeselves (they are e.g. prone to include incon-
sistencies or do not fit well in the presence of temporal data).

5.2 future work

Several assumptions were made throughout this work. Its three main
assumptions are that knowledge graphs be the best representation
for WoT servients and their environment (Sec. 1.2.2), that objects be
a universal data structure to model the physical world (Sec. 2.2.1)
and that an extensive Web ontology for physical bodies and their
properties could be engineered with reasonable effort (Sec. 3.3.1). I
now provide ideas for future work on these three assumptions.

First, in this thesis, knowledge graphs eclipsed alternative represen-
tations like numeric models and simluations. For instance, the graph
of adjacencies describing the Intel Labs office (Sec. 3.4.1) would typ-
ically be provided in a BIM as a 3D model. Such a spatial model
can also be used for thermic simulation in a so-called digital twin
of the building [42]. Cause-and-effect reasoning can be implemented
by comparing sensor measurements with their simulated counterpart
on a digital twin. It is however not trivial to combine numeric models
with symbolic ones like knowledge graphs to obtain realistic simula-
tions. Digital twins would be a good application for research on this
aspect.

Second, if objects are the most widespread atomic structure in
computing, there is no evidence that they are the most accurate to
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model physical world entities [112]. In fact, there are discrepancies
between objects used for pure modeling and the objects computer
programs manipulate. The latter are often designed without consid-
ering whether they can be interpreted in the physical world or not.
Conversely, it is notoriously arduous to program against Web ontolo-
gies, despite their object-oriented DL foundations. There has been
little research on this duality, except to aknowledge it. The W3C WoT
framework includes a standardized API for TD documents (similar
to the Document Object Model for XML), which encourages research
on programmatic aspects of Web ontologies.

Third, after observing that only few Web ontologies included exis-
tential restrictions, was identified the need for an ontology for physi-
cal bodies that includes such restrictions. Addressing this need is one
of the most immediate avenues for future work and it may also be one
of the easiest. This intuition is mainly based on two elements. First,
SWEET, QUDT and OM, three ontologies in the field of physics, have
been among the first extensive Web ontologies to be available on the
Semantic Web: they represent a solid basis to start this work. Second,
many simple laws of physics can be provided as logical rules, like the
fact two miscible fluids have the same volume. It is also possible to
derive inequalities between numeric values from boolean properties,
like the fact a lamp is off also means that brightness it the correspond-
ing space is low. The best way to validate this assumption is to start
working on such an ontology with a strict knowledge engineering
methodology and measure to which extent the rules of Sec. 3.3.1 can
be integrated in a larger ontology.

5.3 final word : the lifecycle of a revolution

I mentioned in preamble of this thesis that it was mostly a “prototype-
driven” work. It was indeed motivated by the desire to develop IoT
and WoT technologies that could be integrated into existing industrial
processes in a near future. I therefore dedicate the final word of this
thesis to the prospect of a new form of industrialization with WoT
and its consequences.

The title of this section was chosen after a presentation Jennifer
Granick made at the 2015 Black Hat Briefings in Las Vegas, where
she questioned whether the Internet will remain the same open and
unregulated—in one word, revolutionary—cyberspace as in the 90’ af-
ter the manufacturing industry settles in it. As a lawyer, she points at
the effects of the IoT on laws for computing and summarizes: today,
Oracle is not being sued for failures while Chrysler is. Information
Technology companies must indeed expect to have to deal with soft-
ware liability issues when autonomous cars embed their data analy-
sis systems and when building operators or households make use of
their intelligent assistants.
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When it comes to software liability, Stuxnet, again, is a good ex-
ample of what the future of WoT could look like. A deactivation
date was hard-coded in Stuxnet’s program after which it would stop
spreading if it receives no command. This date, January 11th, 2009,
corresponds to the end of the last presidential term of George W.
Bush, whom any intelligence service in the United States was subor-
dinated at the time. By law, the creators of Stuxnet had to include in
its design a red security button that could stop all activities of the
malicious program. Stuxnet had a precise log of its activity as well,
at the disposal of decision makers, which turned out to help com-
puter security experts decypher Stuxnet’s peregrinations. By design,
Stuxnet was transparent—at least, to its owners.

In her Black Hat keynote, Granick predicts the end of the Internet
as we know it and the rise of a world of pervasive computing backed
by monopolistic economic structures, which comes with serious pri-
vacy violation threats. In contrast to this vision, the W3C WoT frame-
work aims at introducing openness and decentralization in industrial
systems. The semantic framework for WoT developed in this thesis
goes in the same direction insofar as it defines WoT systems as multi-
agent systems in which agents are capable of autonomy: no central
authority can have full control over a WoT system, unlike Stuxnet. At
first sight, decentralization complexifies the implementation of neces-
sary security measures. Yet, a formalization of the semantics of WoT
brings certain guarantees for its industrialization.

The first guarantee provided by WoT semantics is determinism. In
any cyber-physical system, there is indeed a coupling between the
level of perception of the physical world and expectations, that is, its
prior knowledge of it. In formalizing the relation between the two
as was done in this thesis, it is possible to fully determine one from
the other. For instance, the set of possible graphs of interactions in a
system is fixed as soon as the set of ontologies used to model it is also
fixed. This set can be e.g. defined in terms of alignments in a cloud
of Web ontologies, as the one constructed throughout the thesis.

The second guarantee of WoT semantics is that no assertion is in-
ferred from the absence of information. It is likely that WoT agents
will tend to discard what they cannot perceive, a well-known cogni-
tive bias theoretized by Daniel Kahneman as ‘what you see is all there
is’. Reasoning with a “closed world”, that is, with the assumption that
whatever is not asserted is false, can lead to potentially harmful mis-
calculations. For instance, an autonomous car should not infer from
the fact it does not detect anything on the road that there is indeed
no obstacle. Similarly, if one of the centrifuges in Natanz crashes un-
der the action of Stuxnet, it should not follow that it is not physically
there anymore. Going further, existential reasoning, as is exposed in
Ch. 3, provides a mean to distinguish between the absence of sensing
and sensor failure, whenever a knowledge base states that an entity
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should exist. In the case of Natanz, if the centrifuge is digitally tagged,
a WoT system should be able to detect a failure if no speed is mea-
sured: every centrifuge does have a rotor speed.

For all these reasons, I strongly believe that industrial systems
would benefit from adopting WoT technologies. WoT will likely not
be a revolution in human history but we have not yet come to the end
of the Internet and the Web.
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A
A N O B J E C T N O TAT I O N F O R W E B O N T O L O G I E S

The Web Ontology Language (OWL) has its own functional syntax
that maps to RDF. Throughout the thesis, we have used an alternative
object-oriented syntax inspired by F-logic. In Table 12, we introduce
a mapping to the RDF variant of OWL. Then, we quickly introduce
the principles of transforming tree-shaped rules as defined in Def. 3

to OWL axioms. See Ex. 24.

owl object notation

:C a owl:Class . C

:p a owl:ObjectProperty . p

:a a owl:NamedIndividual . a

[] a owl:Restriction ;

owl:onProperty :p ;

owl:someValuesFrom :C .

x[p ⇒ C]

[] a owl:Restriction ;

owl:onProperty :p ;

owl:allValuesFrom :C .

x:C :− x[p → y]

[] a owl:Restriction ;

owl:onProperty :p ;

owl:onClass :C ;

owl:cardinality "n" .

x[p � { x1, . . . , xn }]

[] owl:complementOf :C . ¬C

:C rdfs:subClassOf :D . x:D :− x:C.

:p a owl:TransitiveProperty . x[p → z] :−
x[p → y] and y[p → z].

:p a owl:FunctionalProperty . x = y :−

x[p → z] and y[p → z].

[] owl:inverseOf :p . p−

:p a owl:SymmetricProperty . x[p → y] :− z[p → x].

:p a owl:ReflexiveProperty . x[p → x].

:p owl:propertyChainAxiom

(:q :r) .

x[p → z] :−
x[q → y] and y[r → z].

:p rdfs:subPropertyOf :q . x[q → y] :− x[p → y].

Table 12: Mapping of OWL to the object notation introduced in the the-
sis; other constructs like owl:unionOf or owl:disjointWith can be
rewritten with the above constructs
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Example 24. We now provide an example transformation from the DL rule
of Ex. 11 to an OWL property path axioms. The general principle of the
transformation is to transform the tree formed by the rule body into a single
path, by rewriting property and class names [39, 67].

First, we introduce an “is” property for each class name in the rule:

x[isActuator → x] :− x:Actuator.

x[isFluid → x] :− x:Fluid.

x[isMechanicalProperty → x] :− x:MechanicalProperty.

x[isGeometricProperty → x] :− x:GeometricProperty.

We then replace all class assertions in the rule with property assertions.
From the resulting tree, we can construt the following path from x to z2:

x[

isActuator → x,

actsOnProperty → z1[

hasProperty− → y[

isFluid → y,

hasProperty → z2[

isGeometricProperty → z2

]

]

]

].

Note the use of hasProperty− to turn the directed tree into a path. A more
readable dot notation can be used for this path:

isActuator.actsOnProperty.hasProperty−.

isFluid.hasProperty.isGeometricProperty

Given this path definition, the rule directly translates into OWL as fol-
lows:

sosa:actsOnProperty owl:propertyChainAxiom (

ex:isActuator

sosa:actsOnProperty

[ owl:inverseOf ssn:hasProperty ]

ex:isFluid

ssn:hasProperty

ex:isGeometricProperty

) .



The example we give here is a (simple) particular case: the rule
body of ex. 11 has a single branch, when seen as an undirected tree.
In the general case, a reflexive “roll-up” property p must be defined
for each additional branch p1.p2. . . pn such that x[p → y] unfolds to
x[p1 → x1[p2 → . . . xn−1[pn → y]]].





B
P R E F I X & C O N T E X T D E F I N I T I O N S

In Ch. 4, we developed a formalization of JSON-LD based on a context,
that is, a mapping from arbitrary UTF-8 strings to IRIs. All examples
in the thesis follow this formalism. Table 13 introduces prefixes for
all Web ontology namespaces referenced in examples and Table 14

provides mappings for entity names defined in these namespaces.

namespace ontology

rdf: RDF Vocabulary

sosa: Sensor, Observation, Sample & Actuation

schema: schema.org

ssn: Semantic Sensor Network

saref: Smart Appliance Reference

om: Ontology of Units of Measure

bacnet: BACowl

onem2m: oneM2M Base Ontology

ec: ecl@ssOWL

ifc: ifcOWL

brick: Brick

dul: Dolce+DnS Ultralite

owl: OWL

dc: Dublin Core

td: Thing Description

geo: WGS84

bot: Building Topology Ontology

ex: (example namespace, for illustrative purposes)

Table 13: List of prefixes used in the thesis

term iri or curie

sensor http://example.org/sensor

Sensor sosa:Sensor

logo schema:logo

Siemens_AG_logo.svg http://en.wikipedia.org/...
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term iri or curie

Sensor sosa:Sensor

Actuator sosa:Actuator

Sampler sosa:Sampler

Platform sosa:Platform

FeatureOfInterest sosa:FeatureOfInterest

Procedure sosa:Procedure

ActuatableProperty sosa:ActuatableProperty

ObservableProperty sosa:ObservableProperty

isHostedBy sosa:isHostedBy

actsOnProperty sosa:actsOnProperty

observes sosa:observes

System ssn:System

Property ssn:Property

hasSubSystem ssn:hasSubSystem

implements ssn:implements

hasProperty ssn:hasProperty

Thing td:Thing

InteractionAffordance td:InteractionAffordance

ReadWritePropertyAffordance td:ReadWritePropertyAffordance

InvokeActionAffordance td:InvokeActionAffordance

SubscribeEventAffordance td:SubscribeEventAffordance

Form td:Form

hasAffordance td:hasAffordance

hasForm td:hasForm

PhysicalObject dc:PhysicalObject

SpatialThing geo:SpatialThing

Temperature om:Temperature

Height om:Height

WaterTank ec:C_AKE989002-gen

Heater ec:C_AAB871002-gen

TemperatureSensor saref:TemperatureSensor

PneumaticValve ec:C_AKE773003-gen

FloatSwitch ec:C_AKE672002-gen

FrequencyConverter ec:C_AKE176003-gen

Centrifuge ec:C_AKL741002-gen

Site bot:Site

Space bot:Space



term iri or curie

Radiator ex:Radiator

Wall ex:Wall

hasSpace bot:hasSpace

containsElement bot:containsElement

hasSubElement bot:hasSubElement

hasOrientation ex:hasOrientation

PhysicalBody ex:PhysicalBody

Air ex:Air

Gas ex:Gas

Liquid ex:Liquid

Solid ex:Solid

Fluid ex:Fluid

MechanicalProperty ex:MechanicalProperty

ThermodynamicProperty ex:ThermodynamicProperty

GeometricProperty ex:GeometricProperty

VolumetricFlowRate om:Volumetric_flow_rate

Volume om:Volume

intersects schema:geospatiallyIntersects

within schema:geospatiallyWithin

contains schema:geospatiallyContains

containsZone bot:containsZone

relatesToProperty ex:relatesToProperty

Hall ex:Hall

ConferenceRoom ex:ConferenceRoom

Zone bot:Zone

adjacentElement bot:adjacentElement

Table 14: Global context for the examples in the thesis; other individuals
simply use the tag: URI scheme (see e.g. Ex. 20)





C
S O C I E T Y & T H E W E B O F T H I N G S

We concluded our thesis by arguing that WoT and formal seman-
tics for WoT can have a positive impact on industrial processes and,
more generally, on human societies. Regardless of its nature, these
technologies will certainly have a significant impact, which calls for
ethical considerations on adopting them. In this mindset and despite
being out-of-scope of our thesis, we provide pointers to few works in
other academic fields in the form of quotes that relate to cybernetics
and various domains of applications of WoT: industry automation,
city digitalization, home automation and autonomous driving.

I do not wish to contribute in any way to selling labor
down the river, and I am quite aware that any labor, which
is in competition with slave labor, whether the slaves are
human or mechanical, must accept the conditions of work
of slave labor.

Norbert Wiener, Father of Cybernetics Norbert Wiener’s Letter to UAW
President Walter Reuther, 1949.

One of the goals of socialism in a libertarian and utopian
form is the abolition of the factory by an ecological tech-
nology, by creative work, and by cybernetic devices cre-
ated to satisfy human needs1.

Murray Bookchin, Pour un municipalisme libertaire, 2003.

[Stafford] Beer acknowledged the difficulties of achieving
real-time economic control, but emphasised that a system
based on a firm understanding of cybernetic principles
could accomplish technical feats deemed impossiblein the
developed world, even with Chile’s limited technological
resources. Once Allende gained a familiarity with the me-
chanics of Beer’s model, he began to reinforce the politi-
cal aspects of the project and insisted that the system be-
have in a ‘decentralising, worker-participative, and anti-
bureaucratic manner’.

Eden Medina, “Designing Freedom, Regulating a Nation: Socialist
Cybernetics in Allende’s Chile”, Journal of Latin American Studies,

2006.

1 translation is by myself.
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The city is a symbol of outward-looking cosmopolitanism
– a potent answer to the homogeneity and insularity of
the nation state. Today it is the only place where the idea
of exerting meaningful democratic control over one’s life,
however trivial the problem, is still viable.

From transport to food delivery, from accommodation to
energy consumption, the city also figures prominently in
how digital technologies penetrate our life.

Evgeny Morozov, “There is a leftwing way to challenge big tech for
our data. Here it is,” The Guardian, August 19th 2018.

This must be what it’s like to be in a documentary or in
a reality TV show. The cameras eventually move to the
periphery of your vision and then disappear altogether.
If homes become sentient, and it becomes the norm that
activity in them is captured, measured, and used to pro-
file us, all of the anxiety you currently feel about being
tracked online is going to move into your living room.

Kashmir Hill & Surya Mattu, “The House that Spied on Me,”
Gizmodo, July 2nd 2018.

[George Dyson: ] “There’s this old law called Ashby’s law
that says a control system has to be as complex as the
system it’s controlling, and we’re running into that at full
speed now, with this huge push to build self-driving cars
where the software has to have a complete model of every-
thing, and almost by definition we’re not going to under-
stand it.”

Andrew Smith, “Franken-algorithms: the deadly consequences of
unpredictable code,” The Guardian, August 30th 2018.
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