
On Modeling the Physical World as a Collection
of Things: the W3C Thing Description Ontology

Victor Charpenay1[0000−0002−9210−1583] and Sebastian
Käbisch2[0000−0002−0544−4204]

1 FAU Erlangen-Nürnberg, victor.charpenay@fau.de
2 Siemens AG, sebastian.kaebisch@siemens.com

Abstract. This document presents the Thing Description ontology, an
axiomatization of the W3C Thing Description model. It also introduces
an alignment with the Semantic Sensor Network ontology and evaluates
how this alignment contributes to semantic interoperability in the Web
of Things.

Keywords: Web of Things · Thing Description · SSN · RDF

1 Introduction

The Web of Things (WoT) is an architectural principle that aims at bringing
sensor and actuator data on the Web in order to increase interoperability between
connected devices and develop arbitrarily complex mash-ups on that basis [19,4].
The World Wide Web Consortium (W3C) embraced that vision and recently
started a standardization activity around WoT with two main outcomes: a set of
architectural guidelines [12] and a model to describe ‘things’ and their interface,
the Thing Description (TD) model [8].

As both specifications are about to be officially released, the present paper
provides an analysis of the role played by RDF and other Semantic Web tech-
nologies in WoT. In particular, RDF shall improve the interoperability across
sensors and actuators at the semantic level, such that autonomous Web agents
can build their own representation of the physical world from data exposed by
various WoT devices.

In practice, semantic interoperability in the TD model translates into an
annotation mechanism such that TD documents—instances of the TD model
serialized in JSON—link to RDF terms defined in domain-specific vocabularies.
To permit it, the TD model was designed on top of a Web ontology, which is
being introduced in this paper: the TD ontology. The paper also introduces a
formal alignment between the TD ontology and the Semantic Sensor Network
(SSN) ontology [6]. It is indeed expected that most relevant vocabularies will
be defined as specializations of SSN, as suggested by recent trends in ontology
engineering for WoT [2,1].

Both the TD ontology and its alignment with SSN were designed as per the
requirement that the TD annotation mechanism should remain as easy to use



as possible, especially for developers with no particular knowledge of Semantic
Web technologies. In practice, developers are only asked to provide semantic
“tags” at several places of a TD document. As a consequence, the axiomatization
we present in this paper favors simplicity over completeness. We provide an
evaluation on its effectiveness at the end of the paper, by looking at a collection
of TD documents that serves as a test set in the W3C standardization process.

The paper is structured as follows: Sec. 2 contextualizes the TD ontology by
providing a short review of the state-of-the-art in WoT ontology engineering,
Sec. 3 presents the vocabulary it defines and Sec. 4 introduces an alignment of
the TD ontology with SSN. Finally, in Sec. 5, the W3C TD test set is being
analyzed in more detail.

2 Ontologies for the Web of Things: State-of-the-Art

Over the last decade, research on WoT systems has moved from pre-defined
sensor mash-ups to autonomous agents capable of selecting what sensor mea-
surements to read and what actuator commands to activate to fulfill a global
goal [18,11,13,3]. This agent-oriented vision for WoT requires a detailed onto-
logical view on the physical world, such that agents can take informed decisions
on what interaction to initiate.

In parallel, a significant effort has been put to providing Web ontologies for
WoT [5]. The SSN ontology, recently standardized, is now the pivot to any on-
tology engineering work in the domain. By analyzing the network formed by
alignments between more than 80 WoT ontologies, SSN stands out as the most
central point in the network [2,1]. Among others, it aligns with the ontology
for units of measure (OM) [17] and the ontology for Quantity Kinds, Units and
Datatypes3 (QUDT), which both provide an extensive list of physical proper-
ties in OWL. SSN also aligns with domain-specific ontologies, like the Building
Topology Ontology (BOT) [16]. In particular, a range of ontologies derived from
the Smart Appliance Reference (SAREF) ontology is currently under construc-
tion4. All these ontologies are designed with compatibility with SSN in mind
[14].

While SSN and the ontologies that align to it model the physical world, the
TD ontology shall provide metadata to guide autonomous Web agents in the
network of interconnected devices that quantify it. In particular, it formalizes
the concept of ‘affordance’, introduced in the next section.

3 The Thing Description Model

The TD model is a schema to which TD documents must comply when exposing
the capabilities of a ‘thing’ on the Web [8]. We briefly presents its main compo-
nents on an example. The following TD document, serialized in JSON, describes
a lamp:
3 http://qudt.org/
4 https://saref.etsi.org/

http://qudt.org/
https://saref.etsi.org/


1 {
2 "@context": "https://www.w3.org/...",
3 "id": "http://lamp.local/#it",
4 "title": "Some lamp",
5 "properties": {
6 "state": {
7 "type": "boolean",
8 "forms": [
9 { "href": "http://lamp.local/st" }

10 ]
11 }
12 },
13 "actions": {
14 "on": {

15 "output": { "type": "boolean" },
16 "forms": [
17 { "href": "http://lamp.local/on" }
18 ]
19 },
20 "off": {
21 "output": { "type": "boolean" },
22 "forms": [{
23 "href": "http://lamp.local/off" }
24 ]
25 }
26 },
27 "events": {}
28 }

The mandatory @context key makes this document a JSON-LD 1.1 docu-
ment, such that it complies to the Linked Data principles and can be turned into
RDF in a standard way [9]. In order for the ‘thing’ (here, the physical lamp) to
become a Web resource, it can be assigned an IRI with the key id, an alias for
the JSON-LD keyword @id.

The three keys properties, actions and events are the main elements of
a TD document. Here, the lamp exposes its on/off state as a property (state),
which can be changed by calling two actions (on and off). The on/off state could
also have been exposed as an event. Every possible interaction with the lamp
starts by submitting a Web form to the ‘thing’, as specified under the forms

key. Here, agents must only know the target URI of each form (href) to start
interacting with the lamp.

This approach centered around Web forms is inspired by the Representational
State Transfer (REST) principles, fundamental to the Web. The values under
property, actions and events are ‘interaction affordances’, which can be seen
informally as “invitations” to interact with the ‘thing’. The concept of affordance
has a well-defined meaning in the context of REST: it relates to hypermedia
controls, that is, links and forms embedded in a message [15].

3.1 Requirements

Requirements for the TD model have been collected in the WoT architecture rec-
ommendation document [12]. The main requirements can be found in Sec. 6.4 of
that document as a series of assertions, which can be turned into formal axioms
with little effort. All model elements listed in these assertions (i.e. the TD ter-
minology) were turned into an RDF class. Assertions that include the keyword
‘may’ have been axiomatized using the lightweight schema.org semantics5. As-
sertions including the keyword ‘must’ have been turned into RDF shapes, using
the SHACL language [10]. The later part is however not presented in this paper.
One can indeed argue that it contributes little to semantic interoperability.

It is however important to introduce the RDF classes and properties of the
TD model (loosely referred to as the TD ontology), in order to then provide an
alignment with SSN, the key element of semantic interoperability. It is indeed

5 https://meta.schema.org/

https://www.w3.org/2019/wot/td/v1
https://meta.schema.org/


Thing

InteractionAffordance

PropertyAffordance ActionAffordance EventAffordance

DataSchema

ObjectSchema ArraySchema

Form

Link

5 more sub-classes

hasInteractionAffordance

hasForm

hasLink

hasForm

hasInputSchema hasOutputSchema hasNotificationSchema

(a) Thing Description model

Sensor Actuator

Observation Actuation

FeatureOfInterest

Property

ObservableProperty ActuatableProperty

System

Platform

madeObservation madeActuationhasProperty

observes actsOnProperty

observedProperty actsOnProperty

hosts

(b) Semantic Sensor Network model

Fig. 1: Overview of the TD and SSN ontologies

in SSN terms that the internal state of a ‘thing’ is to be specified. Contrary to
other RESTful systems, the internal state of WoT systems is not purely infor-
mational but is instead derived from observing physical world objects. Before
developing this aspect in Sec. 4, we first introduce the details of the TD ontology
axiomatization.

3.2 Axiomatization

An overview of the classes and properties of the TD ontology is provided on Fig. 1a.
The Figure shows sub-class relations and property relations whenever instances
of two classes may be related in a TD document. The terms ‘property affordance’,
‘action affordance’ and ‘event affordance’ are respectively the abbreviation of
‘affordance to retrieve/update a property’, ‘affordance to invoke an action’ and
‘affordance to subscribe to an event’.

As shown on the figure, the TD ontology refers to classes that may be used in
another context. In particular, it relies on JSON Schema, a language under stan-
dardization6, and on hypermedia controls (links and forms), which may be used
in other RESTful systems, outside the scope of WoT. To encourage reusability,
these two aspects were put in their own modules, separate from the TD core
module7. We present them next.

Core Module The core module defines two main classes: the class td:Thing8

is the entry point of the ontology and its instances are anything that provides

6 https://tools.ietf.org/html/draft-handrews-json-schema
7 a fourth module for security configurations is included in the W3C standard but not

covered in this paper.
8 all prefixes in the paper can be found on https://prefix.cc/.

https://tools.ietf.org/html/draft-handrews-json-schema
https://prefix.cc/


affordances to interact with it (td:InteractionAffordance). The concept of
interaction is further refined into three sub-classes: it can be a basic state trans-
fer, i.e. a retrieval or an update of the exposed state of the ‘thing’, it can be
an invocation with input parameters and expected result or it can be an asyn-
chronous notification after subscribing to a particular event. Any of these three
interaction patterns translate into a certain kind of affordance, which must in-
clude the appropriate metadata for an agent to be able to properly submit
the associated form. The three affordance classes are td:PropertyAffordance,
td:ActionAffordance and td:EventAffordance.

As per architectural requirements, an action may manipulate the exposed
state of a ‘thing’ but it may as well leave it unchanged. Similarly, event notifica-
tions may include parts of the exposed state or not. Conversely, properties (which
represent the exposed state of the ‘thing’) may be retrieved asynchronously if
they are ‘observable’. As a result, these concepts are not mutually exclusive.
A state can be retrieved either as properties or via events, while it can be up-
dated by manipulating properties or via action invocation. This versatility shall
account for the diversity of communication paradigms that coexist on WoT.

All interaction affordances are composed of two kinds of objects: data schema,
which are to be understood as specifications of abstract data structures, and
hypermedia controls (forms). They are each described next.

Data Schema Module The data schema module is a port of JSON Schema to
RDF. JSON Schema was favored over e.g. schema.org’s property/value specifica-
tion mechanism9, mostly designed for HTML forms. As its name suggests, JSON
Schema is a language whose type system relies on the basic JSON types (object,
array, number, string, boolean and null), to which it adds the integer type. In
RDF, each type becomes a class: jsonschema:ObjectSchema, jsonschema:Ar-
raySchema, etc. The language also includes constraints specific to each type, like
minimum and maximum values for numbers or a maximum length for strings.
Contrary to schema.org’s property/value specifications, JSON Schema is a re-
cursive language, via the jsonschema:properties and jsonschema:items re-
lations, for JSON values of the object and array type.

The goal of this ontological module is less to provide axioms for logical infer-
ence than to offer a simple transformation from JSON to RDF (using a JSON-LD
standard processor). It is therefore merely a set of RDF terms. An alternative
design would have been to embed JSON Schema definitions as literal, leveraging
the newly introduced rdf:JSON datatype10.

Yet, the chosen approach has mainly two benefits over literal schemas. First,
sub-schemas can be semantically tagged in an individual fashion, which will be
later illustrated in Sec. 4. Second, the RDF entities resulting from JSON-LD
transformation could then carry both schema information and denote actual
properties of physical world objects. An example is given later in Sec. 5.3.

9 https://schema.org/PropertyValueSpecification
10 https://w3c.github.io/json-ld-syntax/#the-rdf-json-datatype

https://schema.org/PropertyValueSpecification
https://w3c.github.io/json-ld-syntax/#the-rdf-json-datatype


Table 1: Competency questions for autonomous Web agents
Competency Questions

Q1 How to identify affordances exposed by a ‘thing’ that have the same effects on
the physical world?

Q2 How to identify ‘things’ that fulfill the same function?

Q3 How to map complex property affordances to simpler representations of physical
world objects and their properties?

Q4 How to differentiate between active ‘things’ (like sensors) and passive ‘things’
(like feature of interest under observation)?

Hypermedia Controls Module Classical Web applications make use of two
kinds of hypermedia controls: links and forms. Both links and forms include a
target IRI and a “type”. This type is alternatively called a relation type for links
and an operation type for forms. The TD ontology defines operation types spe-
cific to WoT: td:readProperty, td:writeProperty, td:invokeActtion, td:-
subscribeEvent and a few others. The hypermedia controls module, however,
only includes generic classes and properties that are needed to express links and
forms in RDF. A link can also be thought of as a reification of an RDF triple,
e.g. to add provenance or temporal metadata.

The JSON-LD context that maps terms from this module to JSON keys was
designed in such a way that links have the same format as specified in JSON
Hyper-Schema11.

4 Alignment with the Semantic Sensor Network

4.1 Requirements

The TD model serves primarily communication purposes. The axiomatization
presented in the previous section therefore concentrates on the concept of ‘in-
teraction affordance’. Contrary to what one may think at first sight, it provides
only few axioms on the concept of ‘thing’. Yet, as previously mentioned, the pe-
culiarity of WoT sytems is that they do not have a purely informational state but
rather maintain a virtual representation of the state of physical world objects
(the actual ‘things’).

According to the state-of-the-art, the state of physical world objects will
likely be modeled using ontologies aligned with SSN. It therefore calls for an
alignment of the TD ontology itself to SSN, in order to derive an SSN “view”
on instances of td:Thing.

To this end, we provide four competency questions from the point of view
of Web agents that process TD documents (Table 1). Our assumption is that
agents are autonomous and rely solely on the RDF statements included in a TD
document to select affordances. An example of an affordance selection task is
provided later in Sec. 5.3.

11 https://tools.ietf.org/html/draft-handrews-json-schema-hyperschema

https://tools.ietf.org/html/draft-handrews-json-schema-hyperschema


4.2 Axiomatization

An overview of SSN is given on Fig. 1b. The ontology is mostly centered around
the concepts of ‘observations’ and ‘actuations’ performed by sensors and actua-
tors. However, in the context of WoT, the most relevant classes are sosa:Fea-

tureOfInterest and ssn:Property. These two classes roughly denote physical
world objects and their properties (or characteristics). This basic object model
is meant to be specialized for concrete domains of application, as is the case in
the ontologies mentioned in Sec. 2.

The alignment between TD and SSN consists mostly in existential restrictions
on the classes td:Thing and td:InteractionAffordance. These axioms, like
the TD axioms themselves, were not designed for automatic inference but rather
as ‘may’ statements on the SSN entities to include in TD documents. The two
main alignment axioms are given below12 (OWL Manchester syntax [7]):

1 Class: td:Thing
2 SubClassOf: ssn:System or sosa:Platform or sosa:FeatureOfInterest
3 Class: td:InteractionAffordance
4 SubClassOf: ssn:forProperty some ssn:Property

We review each in the following and then move on to a review of how com-
petency questions can be addressed with SSN.

As provided in our alignment, a ‘thing’ can be any of the following: a sen-
sor (for illuminance, temperature, air quality, etc.); an actuator (like a binary
switch); a composite system; a platform that hosts a system (like a electronic
board with pluggable sensors); a feature of interest (like a room). The list is
not exhaustive. Yet, it covers all ‘things’ described in the W3C implementation
report we review in Sec. 5.

SSN does not define systems, platforms and features of interest as mutu-
ally exclusive. In fact, having systems being themselves features of interest is a
common pattern. It is the case e.g. of consumer electronics products like light
bulbs or air conditioning units: they are connected devices and thus instances
of ssn:System but they are neither sensors, nor actuators and they are more
than simply a combination of both (because the coupling of sensing and actu-
ation follows some internal logic). They can however be modeled as features of
interest with their own properties (on/off status, wind speed, etc.).

The second alignment axiom we reported implies a restriction on what parts
of a ‘thing’ should be exposed via affordances. Indeed, the axiom states that
every affordance relates to the property of some physical world object, that is,
to part of the physical world. In contrast, some properties like a software version
number, a product ID or a writable label only belong to some informational
space, without any tangible extent. Despite the fact that neither SSN axioms
nor the alignment axioms are restrictive on what instances of ssn:Property

should be, exposing informational properties as plain RDF statements should
be favored over exposing affordances to these properties.

12 other axioms can be found in the TD ontology documentation, served under its
namespace URI: https://www.w3.org/2019/wot/td.

https://www.w3.org/2019/wot/td


1 {
2 "properties": {
3 "state": {
4 "ssn:forProperty": "_:status"
5 }
6 },
7 "actions": {
8 "on": {
9 "ssn:forProperty": "_:status"

10 },
11 "off": {
12 "ssn:forProperty": "_:status"
13 }
14 }
15 }

(a) Q1

1 [
2 {
3 "properties": {
4 "light1": {
5 "ssn:forProperty": "_:light"
6 }
7 }
8 }, {
9 "properties": {

10 "light2": {
11 "ssn:forProperty": "_:light"
12 }
13 }
14 }
15 ]

(b) Q2

1 {
2 "properties": {
3 "measurement": {
4 "type": "object",
5 "properties": {
6 "temperature": {
7 "ssn:forProperty": "_:temp"
8 },
9 "humidity": {

10 "ssn:forProperty": "_:humid"
11 }
12 }
13 }
14 }
15 }

(c) Q3

1 [
2 {
3 "title": "Some sensor",
4 "properties": {
5 "measure": {
6 "ssn:forProperty": "_:light"
7 }
8 },
9 "sosa:observes": "_:light"

10 }, {
11 },
12 "title": "Some room",
13 "properties": {
14 "measure": {
15 "ssn:forProperty": "_:light"
16 }
17 "ssn:hasProperty": "_:light"
18 }
19 ]

(d) Q4

Fig. 2: Examples of annotation for each competency question

We now illustrate with examples how the competency questions of Table 1 can
be addressed. In each case, the existential restrictions that exist between TD and
SSN classes were “instantiated” with blank nodes that have ssn:forProperty-
relations with TD entities. Portions of TD documents can be found on Fig. 2.

The first competency question (Q1) refers to the fact that the exposed state
of a ‘thing’ may be retrieved via readable properties or events and updated via
writable properties or actions, often exposed within the same TD document.
The example on Fig. 2a makes the relation explicit between the state prop-
erty affordance and the on and off action affordances, by pointing at the same
actuatable property (an on/off status).

In this example, Web agents must also be able to differentiate between the on
and off actions, as they may have the same signature. For that purpose, a set of
basic command types can be found in SAREF (‘turn on’, ‘turn off’, ‘toggle’, ‘set
level’, ‘setp up’, ‘step down’, etc.). This aspect is however not directly solvable
by an alignment with SSN.



Regarding Q2, it is also possible to use properties of physical world objects
as connectors between ‘things’. For instance, two sensors may provide measure-
ments for the same observable property, as on Fig. 2b. In this example, two light
sensors observe the same illuminance property, e.g. because they are in the same
room. This modeling is an approximation, as the two sensors cannot strictly
provide measurements for the same illuminated surface but it suffices in most
home automation applications.

Regarding Q3, the need to individually characterize parts of a data schema
arises from the observation that certain developers expose data of different na-
ture under the same URI. For instance, sensor boards designed to provide en-
vironmental data (temperature, humidity, compass direction, etc.) may expose
only one complex property in which a value for all physical quantities is provided
in a single JSON message.

It is the case in the example of Fig. 2c which offers only one measurement

property affordance. The temperature and humidity values in the provided
schema however point to SSN properties of different types (type statements are
not shown for the sake of brevity).

The last competency question (Q4) is relevant to Web agents insofar as se-
lecting interactions may require knowledge about the underlying sensing or ac-
tuation mechanism. In the last example (Fig. 2d), the upper definition describes
the sensor that produces measurements itself while in the lower one, the room
in which the sensor is located is exposed instead, hiding the sensing device from
the agent. Yet, the two definitions include the same affordance.

Exposing (inanimate) physical world objects instead of sensors is relevant in
certain cases, though. It is for instance simpler when the object is observed by
numerous devices, whose measurements are combined into a single state. In the
implementation report presented in the next section, a TD document describes
a water tank that embeds three sensor: a water level sensor at its top, another
at its bottom and a radar that provides the absolute level.

5 Evaluation

Every W3C standard must be associated with a technical implementation report,
which proves interoperability between distinct implementations of the standard.
Over the course of the standardization of WoT at W3C, the working group
gathered implementation experience by putting existing devices on the Web
and thus collected a number of TD documents that were then included in the
implementation report for the TD model. In the following, we analyze these TD
documents with respect to semantic interoperability and evaluate the role of our
axiomatization on that aspect.

In this section, we first give an overview of the set of TD documents that are
available. We then report on the semantic tagging approach chosen by imple-
menters and evaluate whether the competency questions of Table 1 are properly
addressed by this approach. To this end, we chose a specific task among those



Table 2: List of ‘things’ under test
Type Unique All Type Unique All
Light switch 2 13 Blinds 2 2
Lamp 7 9 Camera 2 2
Illuminance sensor 5 5 Car 1 2
Generic switch 5 5 Pump 1 2
Motion sensor 4 4 Electric meter 1 1
Generic sensor board 4 4 Robot cleaner 1 1
Bulletin board 2 4 Industry automation model 1 1
Temperature sensor 1 3 Water tank 1 1
Buzzer 2 2 Boiler 1 1
Air conditioning unit 2 2 Medical device 1 1
Total 44 65

tested by the W3C working group, which consists in automatically selecting
specific affordances from all affordances included in the set of TD documents.

5.1 The W3C Thing Description Implementation Report

The implementation report for the W3C TD specificaton13 relies on a set of
95 TD documents that each implement specific aspects of the TD model. All
examples metioned in this paper come from this test set.

Among the 95 documents, we identified 65 that relate to actual devices (or
simulations). The other documents are synthetic and designed for pure testing.
Table 2 provides a list of all devices under test. Most of them are small de-
vices (lamp, illuminance sensor, switch, sensor board, electric meter) but the
test set includes various other devices, like air conditioning units, blinds, cars
and an industrial plant model. Some of the TD documents were generated from
other specifications, standardized by other consortia like the Open Connectiv-
ity Foundation14 and ECHONET15. One of the two cars exposes data via its
on-board diagnostics interface, specified by the International Organization for
Standardization.

Some of the TD documents are copies of each other, in which only id and
href values differ. If we discard duplicates, there remains 44 unique sets of inter-
action affordances. They were designed by 8 distinct organizations (all members
of the W3C working group). We could observe notable differences in the data
schema definitions, despite referring to similar properties. In particular, the test
set includes four different schema definitions for a brightness property: either a
number in the intervals [0, 100], [0, 254] or [−64, 64] or an enumeration of the
100 integers in the interval [0, 100]16. This observation motivates the need for
some further input by WoT developers to guarantee interoperability.

Interoperability among these devices was tested in different scenarios by the
working group members: home appliances are turned off when the owner leaves

13 https://w3c.github.io/wot-thing-description/testing/report.html
14 https://openconnectivity.org/
15 https://echonet.jp/
16 this uncommon representation is due to an automatic translation from ECHONET

schemas to TD documents.

https://w3c.github.io/wot-thing-description/testing/report.html
https://openconnectivity.org/
https://echonet.jp/


the house; industrial equipment is put in safety mode when an accident is de-
tected; the electric consumption of devices in a large building is adapted to real-
time electric supply. Other ad-hoc interoperability tests have been performed,
e.g. between generic switches and various actuators (like a car’s honk). For prac-
tical reasons, all interoperability tests were performed among specific instances
of ‘things’, involving manual annotation, as opposed to relying on semantic an-
notations of TD documents. The next two sections address the question of pure
semantic interoperability, without human intervention.

Note that all figures in the remainder of the evaluation are based on the 44
TD documents with unique sets of interaction affordances, rather than on all 65
documents.

5.2 Semantic Tagging

Every TD document is a JSON-LD document. Objects that map to RDF entities
can therefore be added arbitrary statements in the JSON-LD syntax, as in the ex-
amples of Sec. 4. However, this principle seems to be hardly understood by devel-
opers with no particular knowledge of Semantic Web technologies. Consequently,
the decision has been made among the group that semantic annotations be lim-
ited to the tagging of certain model elements with type statements, using the
JSON-LD @type keyword. Such @type tags should be put on instances of three
classes: td:Thing, td:InteractionAffordance and jsonschema:DataSchema.
One implementation of the WoT standards documents them as “the names of
schemas for types of capabilities a device supports,”17.

Although developers are generally aware of the necessity of semantic tag-
ging to increase interoperability in WoT, the concept of “schema” has remained
ambiguous. To ease the tagging effort developers must provide, an initiative
to provide a unified vocabulary adapted to TD documents has been launched
in parallel to the W3C standardization activity. This initiative, referred to as
iot.schema.org, aims at reproducing the success of schema.org in the WoT do-
main18. The upper-level classes of iot.schema.org are aligned with those of the
TD model and are meant to later align both with schema.org and with ontologies
like SSN and SAREF. It includes a total of 194 classes at the time of writing,
some of them having no equivalent class in other WoT ontologies yet (e.g. for
individual red/green/blue components of a color).

Some of the TD documents of the W3C implementation report include @type
tags from iot.schema.org. An overview of how tagging was performed is given
in Table 3. What the table first shows is that the majority of TD entities were
still not tagged (84% of property affordances and 86% of data schemas). It also
shows how many tags can be considered as erroneous because the corresponding
URI does not exist in iot.schema.org (resource not found): they represent 39%
of the tags.

17 https://iot.mozilla.org/wot/#type-member
18 http://iotschema.org/ (incubated domain name for http://iot.schema.org)

https://iot.mozilla.org/wot/#type-member
http://iotschema.org/
http://iot.schema.org


Table 3: Summary of @type tagging in the W3C test set (t: thing, p: property,
a:action, e: event, sc: data schema, x: resource not found, ∅: no tag)

t p a e sc x ∅
td:Thing 10 1 12 33

td:PropertyAffordance 29 2 11 6 264
td:ActionAffordance 5 7 41
td:EventAffordance 1 1 4

jsonschema:DataSchema 2 14 22 258

Some of the erroneous tags are undoubtedly spelling mistakes (like iot:Pro-
pertyChangeEvent instead of iot:PropertyChangedEvent), which appropriate
tooling can mitigate. However, some of these tags seem to result from conceptual
discrepancies with the original iot.schema.org vocabulary. For example, the tag
iot:RunModeChanged does not exist in iot.schema.org although iot:RunMode

does. Moreover, the former is used as annotation for a data schema, although
its name suggests it should apply to event affordances.

This assumption is supported by the fact that the confusion between prop-
erties and events can also be observed for a tag that does exist in the vocab-
ulary: iot:MotionDetected. This class is defined as a sub-class of iot:Event

but despite this axiom, two independent contributors to the implementation
report used it to tag an instance of iot:Property, which is semantically in-
consistent. We identified two more cases of semantic inconsistency: a sub-class
of iot:Property used to tag a ‘thing’ entity and two other sub-classes of
iot:Property to annotate data schemas.

One of the original design choices of iot.schema.org was to introduce a cer-
tain level of redundancy to ensure developers would find the appropriate tag
for a given level of abstraction. As a result, the vocabulary includes e.g. the
classes iot:IlluminanceSensing, iot:Illuminance and iot:IlluminanceDa-

ta, to respectively tag a ‘thing’, a property affordance and a data schema. What
our review suggests, however, is that developers tend not to make the distinction.

To mitigate the risk of confusion, an alternative design would consist in
keeping property classes only: iot:Motion and iot:Illuminance, for example.
Our alignment of the TD ontology with SSN becomes then relevant to retain
conceptual consistency. These two classes can indeed be both defined as sub-
classes of sosa:ObservableProperty.

It is worth mentioning two further observations on that topic. First, most
entities in TD documents are either data schemas or property affordances (which
are also instances of data schemas, as constrained by the TD model’s RDF
shapes). The modeling effort of iot.schema.org should therefore give priority to
properties. Second, although Table 3 shows that ‘things’ are entities with the
highest tagging ratio, all ‘things’ with tags also include tags at the affordance or
the data schema level. It suggests again that properties are the most important
entities in a TD document. Existing WoT ontologies already include a number of
classes for the physical properties of physical world objects (OM and QUDT, in
the first place). Our alignment with SSN details how affordances and properties
should relate.



Space

Lamp Sensor Sensor

OnOffState Motion Light

InteractionAffordance InteractionAffordance InteractionAffordance

hasElement hasElement hasElement

hasProperty measures measures

forProperty forProperty forProperty

Fig. 3: Query pattern for the affordance selection task

In the next section, we review how SSN statements can be derived from
@type tags in order to perform an affordance selection task. Tags originate from
existing WoT ontologies, as per the above conclusion.

5.3 Affordance Selection Task

The following three-step process was part of a larger home automation scenario
in the W3C implementation report: 1. start if motion is detected in some room,
2. turn on the lamp in this room, 3. after some time, end if illuminance is above
a certain threshold, 4. otherwise, retry.

This relatively simple mash-up requires affordances of three different kinds
to be properly selected. Selection can be reduced to a single query that matches
the pattern depicted on Fig. 3, which is formulated using SSN and BOT terms,
mostly. This choice is motivated by our review of the state-of-the-art. The goal
of the evaluation for this task is to compare a manual affordance selection with
an automatic procedure which only takes @type tags as input.

We manually annotated the relevant TD documents with SSN statements,
assuming all ‘things’ were located in the same room. The task involves 16 ‘things’,
about one third of the whole test set, and 21 affordances in total: 3 for motion,
14 for updating the on/off state of the lamp and 4 for illuminance. We used five
classes for the annotation: saref:Motion, saref:LightingDevice, saref:On-
OffState, saref:OnCommand and saref:Light. We assume developers provide
the appropriate @type tagging for these classes. Given that baseline, we can
compare our manual annotation with an inference-based procedure which derives
SSN statements from a combination of TD statements and type statements. We
further assume that the classes listed above are aligned with SSN.

The first inference rule that is needed for that purpose is given by the fol-
lowing axiom (OWL Manchester syntax):

1 Class: :SelfAffordance
2 SubClassOf: (ssn:PropertyAffordance or jsonschema:DataSchema) and
3 ssn:Property
4 Class: :SelfAffordance
5 SubClassOf: ssn:forProperty Self



This rule states that whenever a property affordance or a data schema is
annotated with a sub-class of ssn:Property, it then has an ssn:forProperty-
relation with itself. In other words, it is as if the SSN property carries its own
schema information.

We now look at the competency questions of Table 1 one by one to bridge the
gap between @type tags and our baseline. Looking at Q1, the challenge is here
to find the correspondance between property affordancs on the (writable) on/off
state of a lamp and actions affordance to turn the same lamp on. This occurs in
4 TD documents. This equivalence between property and action can be turned
into an inference rule that is triggered whenever the tags saref:OnOffState

and saref:OnCommand co-occur in a TD document19.

Interestingly, 2 TD documents expose two distinct property affordances for
the same on/off state. The rule above would also merge them if we add the
constraint that lamps can only have one on/off state. However, another TD doc-
ument exposes a total of 4 affordances tagged with saref:OnCommand. Yet, not
all these affordances are for the same property. The ‘thing’ is indeed composed
of three LED strips which can be individually controlled. Only one affordance
turns all LEDs on. Inference remains sound e.g. if the ‘thing’ is tagged as a
platform instead of a feature of interest (such that the rule is not triggered). It
is however a fragile assumption.

As for Q2, the relation between ‘things’ that is required for our lighting task
is a relation stating that devices are in the same building space (to prevent that
the process runs into infinite loops). Because this aspect is not addressed in the
W3C implementation report, we assume that all devices are in the same room
for the sake of this evaluation, without further annotation.

Regarding Q3, @type tagging is satisfactory. It does not require further infer-
ence. However, @type is necessary: 7 TD documents embed the values required
for the task in complex schemas.

Finally, regarding Q4, we can observe that most TD documents follow the
same pattern: if the ‘thing’ is a feature of interest, it provides affordances for
its own properties; if it is a sensor or an actuator, its affordances refer to the
properties it measures or acts on. Again, these rules can be expressed as OWL ax-
ioms such that SSN relations be inferred from td:hasInteractionAffordance-
relations.

In a similar fashion to the inference rule fulfilling Q1, the inferred statements
would not hold in the general case. For instance, when a ‘thing’ is a complex
system as are a car or an industrial automation system, if it is tagged as an in-
stance of sosa:FeatureOfInterest as well, it would be inferred that it exposes
affordances to its own properties. However, it would be more likely that the ex-
posed properties are those of its subsystems. It remains sound in our lighting
task, though.

19 because most inference rules mentioned in this section are tedious to write in OWL,
we do not represent them in the paper; they can be found online, along with the set
of annotated TD at https://www.vcharpenay.link/talks/td-sem-interop.html.

https://www.vcharpenay.link/talks/td-sem-interop.html


To summarize our comparison between a manual annotation and automati-
cally inferred statements from @type annotations, we can state that all 21 affor-
dances could be correctly selected as expected. However, as noted while looking
at Q1, 3 more affordances would be wrongly selected as well depending on the
value of a single @type tag. On a different aspect, to arrive at the expected re-
sult, it is worth noting that only a tractable OWL fragment was needed (OWL
RL), which provides certain guarantees in terms of scalability.

6 Conclusion

This paper, along with introducing the TD ontology, underlines that the align-
ment with SSN is essential for autonomous agents to be developed in future
WoT systems. Most of the standardization conducted by the W3C was put on
interoperability at the protocol level. The TD standard that results from this
work includes certain assumptions on how interoperability at the semantic level
can also be guaranteed. In particular, it is assumed that relying on the JSON-LD
syntax and allowing for @type tagging will allow agents to implement arbitrarily
complex form selection procedures to drive applications.

This paper provides an initial evaluation of this claim, based on the TD docu-
ments included in the W3C implementation report associated with the standard.
Under certain conditions, a lighting process involving motion sensors, lamps and
illuminance sensors could be executed on the sole basis of @type tags, provided
that OWL axioms specify how SSN statements can be inferred from these an-
notations (Sec. 5.3).

Even in this simple task, certain limitations could be shown: substituting one
tag with another may threaten the soundness of inference. Mitigating that risk
will require appropriate tooling to show WoT developers the potential effects of
their tagging when ‘things’ are combined. In particular, members of the W3C
working group on WoT expressed several times the lack of tools that can detect
semantic inconsistencies introduced by @type tags. A few inconsistencies could
indeed be shown in the implementation report, as mentioned in Sec. 5.2. How-
ever, we could identify an alternative conceptualization, centered around SSN’s
features of interests and their properties, that could help limit these inconsis-
tencies.

As the W3C is already preparing for the future version of the TD standard,
the Semantic Web community may embrace this question of tooling to improve
the quality of input annotations.

Acknowledgments. The authors would like to thank all participants of the W3C
WoT Working Group, particularly Maŕıa Poveda-Villalón and Maxime Lefran-
çois, for their contribution to the TD ontology. This work was partially funded by
the German Federal Ministry of Education and Research through the MOSAIK
project (grant no. 01IS18070-A).



References

1. Charpenay, V.: Semantics for the web of things: Modeling the physical world as a
collection of things and reasoning with their descriptions (2019)

2. Charpenay, V., Käbisch, S., Kosch, H.: Introducing thing descriptions and inter-
actions: An ontology for the web of things. In: Joint Proceedings of SR and SWIT
2016. vol. 1783, pp. 55–66 (2016)

3. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing manufacturing lines on the
fly with multi-agent systems for the web of things. In: Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2018, Stockholm, Sweden, July 10-15, 2018. pp. 813–822 (2018)

4. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded
devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain. vol. 15 (2009)

5. Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: LOV4IoT: A second life for
ontology-based domain knowledge to build semantic web of things applications. In:
2016 IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud). pp. 254–261. IEEE (2016)

6. Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., Lefrançois, M.: Seman-
tic sensor network ontology, https://www.w3.org/TR/vocab-ssn/

7. Horridge, M., Patel-Schneider, P.F.: OWL 2 web ontology language manchester
syntax (2009)

8. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of things
(WoT) thing description, https://www.w3.org/TR/wot-thing-description/

9. Kellogg, G., Champin, P.A., Longley, D.: JSON-LD 1.1, https://www.w3.org/TR/
json-ld11/

10. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL), https:

//www.w3.org/TR/shacl/

11. Kovatsch, M., Hassan, Y.N., Mayer, S.: Practical semantics for the internet of
things: Physical states, device mashups, and open questions. In: 2015 5th Interna-
tional Conference on the Internet of Things (IOT). pp. 54–61. IEEE (2015)

12. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K.,
Kajimoto, K.: Web of things (WoT) architecture, https://www.w3.org/TR/

wot-architecture/

13. Käfer, T., Harth, A.: Rule-based programming of user agents for Linked Data. In:
Workshop on Linked Data on the Web. LDOW 2018 (2018)

14. Lefrançois, M.: Planned ETSI SAREF extensions based on the W3C&OGC
SOSA/SSN-compatible SEAS ontology patterns. In: Workshop on Semantic In-
teroperability and Standardization in the IoT, SIS-IoT. p. 11p. Proceedings of
Workshop on Semantic Interoperability and Standardization in the IoT, SIS-IoT
(2017)

15. Pautasso, C., Wilde, E., Alarcon, R. (eds.): REST: Advanced Research Topics and
Practical Applications. Springer New York (2014)

16. Rasmussen, M.H., Lefrançois, M., Pauwels, P., Hviid, C.A., Karlshøj, J.: Man-
aging interrelated project information in AEC knowledge graphs. Automation in
Construction 108, 102956 (2019)

17. Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related
concepts. Semantic Web Journal 4(1), 3–13 (2013)

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/


18. Verborgh, R., Haerinck, V., Steiner, T., Van Deursen, D., Van Hoecke, S., De Roo,
J., Van de Walle, R., Gabarro, J.: Functional composition of sensor web APIs. In:
SSN. pp. 65–80 (2012)

19. Wilde, E.: Putting things to REST (2007)


	On Modeling the Physical World as a Collection of Things: the W3C Thing Description Ontology

