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ABSTRACT

This paper presents a method for the integration of data orig-
inating from sensors and actuators that follow different for-
malisms, although they semantically interlap. We tested our
approach one three Web of Things standards published re-
spectively by the Open Mobile Alliance (OMA), the Open
Connectivity Foundation (OCF) and the oneM2M founda-
tion.

Our method extensively relies on Semantic Web technologies.
First, observing that all standards provide a JSON representa-
tion of the data they specify, we generate an equivalent RDF
representation by exploiting features of the recent JSON-LD
format. We then define SPARQL inference rules, part of the
new SHACL specification, to align the resulting RDF data
with a unified ontology we call the Web of Things cloud. This
ontology includes concepts from the SOSA, SSN, SAREF
and SEAS ontologies.

We evaluated our method by measuring the semantic sim-
ilarity that exists between the standards OMA, OCF and
oneM2M define. Our experiments show that the overlap be-
tween these standards is limited. Although all of them focus
on the home & building automation domains, the schemas
they provide cover different device types.
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INTRODUCTION

The Web of Things (WoT) was first introduced almost a
decade ago [18]. Since then, it has become a mature technol-
ogy field endorsed by the industry. OneM2M' and the Open
Connectivity Foundation (OCF)? are two industrial consortia
publishing information models and communication standards
that follow the principles of the Web of Things: sensors and
actuators implementing these standards shall expose RESTful
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interfaces on the Web via HTTP and WebSocket (or similar
protocols such as CoAP, the Resource Constrained Applica-
tion Protocol [35]).

Typically, a Web agent could request the switch status of a
oneM2M device, exposed as a Web resource, and get the
following JSON representation containing "powerState":
false to indicate that the switch is currently turned off:

{
"containerDefinition":
"0.0.h.m.binarySwitch",
"powerState": false,
"childResources": [...]

¥

Similarly, the switch could be turned on by sending a com-
mand to the same resource with another JSON object in the
request payload. An OCF device would also expose data via a
Web resource but with a different representation of the switch
state, as follows:

{
"rt": ["oic.r.switch.binary"],
"id": "someUniqueID",
"value": false

}

Here, the comparison highlights what remains a critical issue
in the Web of Things, namely interoperability. OneM2M and
OCEF rely on the same (Web) architecture, the same commu-
nication protocols and the same encodings, and yet, a generic
Web agent would have to deal with two distinct information
models to be able to infer the state of a WoT device. In this
particular case, a mapping between the two representations
is easy but, in the general case, there is no guarantee that a
mapping is possible, for lack of contextual meta-data.

This issue of interoperability has been a concern since the
coming of the Internet of Things (IoT) [10, 22, 34]. Interop-
erability, in a broad sense, is the ability of distinct systems to
exchange and use information [1], it is one of the architec-
tural requirements of the IoT [2]. In this paper, we deal more
specifically with the subsequent problem of data integration,
that is, the transformation between "powerState": false
and "value": false, in this particular example.

Currently, standardization bodies like oneM2M and OCF de-
fine their own models without considering formal alignment
with each other. In this paper, we review the models of
oneM2M, OCF and the Open Mobile Alliance (OMA) —
another standardization body with similar objectives— in or-
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der to formally align them. More specifically, we align these
models to a reference ontological model centered around the
Semantic Sensor Network (SSN) ontology.

Section 2 presents the work of oneM2M, OCF and OMA, as
well as the state-of-the-art regarding ontologies for the IoT.
We then present in Sec. 3 how we used Semantic Web tech-
nologies (RDF, SPARQL) to semantically integrate data pro-
duced by devices implementing different standards. We eval-
uate our approach in Sec. 4 by comparing oneM2M, OCF
and OMA with each other, both semantically and lexically.
We then conclude in Sec. 5.

RELATED WORK

Web Technologies for the loT

The original idea of the Web of Things is the following: ex-
posing low-power IoT devices on the Web can increase their
integration to open systems (via Web APIs) and the com-
posability of the services they provide (e.g. Web service
mashups) [17, 37]. Since then, it has been the subject of many
scientific workshops, first emerging in the field of pervasive
computing and sensor networks [19], and later reaching the
Semantic Web community [16]. In an attempt to summarize
the outcomes of this research in a collection of Web standards,
the W3C launched a working group for WoT in 2016 [26].

As stated in its charter, the WoT framework is not supposed to
replace or subsume the work of other standardization bodies.
The latter either provide extended models in a specific domain
(such as Project Haystack® or the Fairhair alliance” in the do-
main of building automation) or provide a generic reference
architecture. OneM2M, OCF and OMA fall in the latter cate-
gory. These three have the peculiarity that the gap between
their respective standards is small. As already mentioned,
they all rely on the Web architecture by exposing RESTful
interfaces but, in addition, they also all have a binding to the
same protocol (CoAP) and support the same format (JSON).
The only issue they do not virtually address is that of seman-
tic interoperability, ideal for our study. These three standards
also have the merit of providing models for the same applica-
tion domain: home automation. We review these models in
the following.

Among the numerous standards published by OMA, the ones
that directly relate to WoT are grouped under the name OMA
SpecWorks>. SpecWorks includes the Lightweight Machine-
to-Machine (LWM2M) specification, which specifies an ob-
ject and resource model that can be specialized by third-
parties [7]. OMA SpecWorks itself provides objects for vari-
ous sensors and digital/analog industrial devices®. All models
are published on a registry managed by OMA’. LWM2M re-
lies on the SenML data model [6], which includes a JSON
serialization [23].

3https://project—haystack. org/

4https://www. fairhair-alliance.org/
5https://www.omaspecworks.org/

®Initially developed by the IPSO alliance, independent from OMA.
7http ://wuw.openmobilealliance.org/wp/OMNA/LwM2M/
LwM2MRegistry.html

Table 1. Meta-models and data formats.

oneM2M oneloTa IPSO
Meta-model SDT OAS LWM2M
Model HAIM oneloTa IPSO
Data format XSD JSON schema  senML

Similarly, OCF publishes shared models on the oneloTa plat-
form®. These models are machine-readable Web API spec-
ification templates, following the Open API Specification
(OAS) format [8]. The default serialization for OAS is JSON.

Finally, the oneM2M organization publishes several domain-
specific models, all based on the Smart Device Template
(SDT) framework, specified by the Home Gateway Initiative
(HGI)°. So far, oneM2M has published SDT models for the
domain of home appliances only, in a specification called the
Home Appliance Information Model (HAIM) [5]. This spec-
ification also includes XML schema definitions (XSD) and a
mapping from XML to JSON.

As this review shows, none of these standardization bodies
share the same baseline, although they all tend to reuse exist-
ing works. Our summary in Table 1 highlights their hetero-
geneity. However, collaboration across standardization bod-
ies exists, as their members acknowledge the need for inter-
operability in IoT systems. This statement was the conclu-
sion of the Workshop on IoT Semantic/Hypermedia Interop-
erabilty (WISHI)!?, an event organized by the Internet Engi-
neering Task Force (IETF) where all organizations cited in
this section were represented. The conclusions of this work-
shop were also the starting point of our present work.

Web of Things Ontologies

As mentioned earlier, the Semantic Web community also
deals with the Web of Things, mostly regarding semantic
interoperability and integration. While, in the fields of per-
vasive computing and sensor networks, the outcomes of re-
search are being transferred to the industry via standard-
ization, the question of semantic integration on the Web of
Things is still an open research question. So far, Semantic
Web technologies have been identified as the most relevant
vector of progress towards that objective [10, 22].

Among others, RDFS and OWL are W3C recommendation to
express so-called ontologies, which correspond to machine-
readable concept definitions exposed on the Web. Data inte-
gration can be achieved by linking multiple sources to a ref-
erence ontological model. The W3C WoT group is working
on giving WoT servers a means to expose their capabilities by
referencing ontologies via the Thing Description (TD) model
[24]. It happens that oneM2M also includes OWL definitions
in its standards (the oneM2M base ontology [4]). OCF and
OMA, however, do not.

In a preliminary study on candidate ontologies for WoT, we
identified a lack of homogeneity in the state-of-the-art, espe-

8http ://oneiota.org/
9http ://vwww.homegatewayinitiative.org/
10https ://github.com/t2trg/2017-07-wishi
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cially regarding the modeling of Web services and physical
quantities [11]. However, most ontologies were already pro-
viding semantic alignment with the Semantic Sensor Network
(SSN) ontology, first incubated by the W3C [12] and now an
official W3C recommendation [21]. A lightweight version
of SSN is also part of the standard: the Sensor, Observation,
Sample, and Actuator (SOSA) ontology.

SSN provides an in-depth model to specify sensor measure-
ments, the features of interest being observed, system deploy-
ments and the conditions of data acquisition. Alignment with
other vocabularies is also provided. In many places, however,
the terms SSN defines are placeholders for future alignments
with domain-specific vocabularies. For instance, there is no
definition for the concept of temperature in SSN, nor is there
a definition of a binary switch (as in our introductory exam-
ple). It only includes the more abstract concepts of ‘property’
and ‘device’.

A recent workshop on semantic interoperability and standard-
ization in the IoT (SIS-IoT) resulted in several proposals for
an alignment of SSN with other vocabularies: SAREF and
SEAS [27, 30]. The Smart Appliance Reference (SAREF)
ontology defines both concepts of ‘temperature’ and ‘binary
switch’, as well as other elements of building automation sys-
tems. This work was mostly driven by the industry and be-
came a standard by the European Telecommunications Stan-
dards Institute (ETSI) [3]. The standard also includes an
alignement of the oneM2M base ontology to SAREF. Con-
tributions to the SIS-IoT workshop include an alignment be-
tween SAREF and SSN, which states e.g. that ‘temperature’
is a sub-class of ‘property’ and ‘binary switch’ a sub-class of
‘device’. Indirectly, SAREF also aligns with the Ontology of
units of Measure (OM) by reusing some of its units. OM is
not a standard but it is a comprehensive and well-maintained
set of axioms.

The Smart Energy Aware System (SEAS) ontology provides
both a generalization of SSN and several specializations (e.g.
for the building automation, energy and environmental do-
mains) [28]. The ontology was designed by active contrib-
utors of SSN and an alignment between the two ontologies
is provided. In SIS-IoT, a direct alignment between SEAS
and SAREF was also proposed and an official endorsement
of SEAS by ETSI is planned. In addition, an alignment be-
tween SEAS and the TD vocabulary (which is also defined as
an OWL ontology) was proposed.

SSN, SAREF and SEAS are not the only ontological models
for the IoT in the state-of-the-art. The Linked Open Vocab-
ulary initiative for the IoT (LOV4IoT) indexes all ontologies
on the Web related to the IoT [20]. However, the ontologies
listed on LOV4IoT are of varying quality and some of them
are not actively maintained. In contrast, all ontologies consid-
ered in SIS-IoT are —or will be— standards, i.e. the result of
a consensus among industrial partners.

Summary

Our review of the emerging industry standards for WoT, in
particular IPSO, oneloTa and HAIM, shows that they are
built on heterogeneous modeling frameworks with no com-

mon ground, although a cross-standard effort exists for their
mutual integration. On the other hand, we see the emergence
of a consistent cloud of IoT ontologies maintained by the
W3C and ETSI and aligned with each other: SSN, SAREF,
OM and SEAS. In the following, we will refer to this set of
ontologies and their alignment as the WoT cloud. We also in-
clude the W3C TD model in the WoT cloud, as it is meant
to be a bridge between industrial systems and the Semantic
Web.

The idea we develop in this paper is to use the WoT cloud as
a reference integration model for the semantic integration of
IPSO, oneloTa and HAIM. We introduce next our semantic
data integration method.

SEMANTIC DATA INTEGRATION

Semantic data integration, in our case, consists in performing
syntactic transformation on data from different source mod-
els to a single reference model, such that the semantics of
the data is preserved. As highlighted in Sec. 2.2, Semantic
Web technologies are a good candidate for this task. Here,
we show how arbitrary JSON data described in a schema
language (e.g. JSON schema) can be turned into RDF and
aligned with the WoT cloud, used as a reference integration
model.

As shown on Table 1, all the standards we reviewed are spec-
ified in terms of data schemas and meta-models. Roughly,
we exploit the former to turn JSON data into RDF and the
latter to generate transformation rules expressing alignments
between arbitrary data and concepts from WoT cloud.

From JSON to RDF

Our transformation from JSON to RDF relies on the mecha-
nisms specificed by the recent W3C standard called JSON for
Linked Data (JSON-LD) [36]. JSON-LD aims at defining a
transformation by a context, which is a JSON object provid-
ing mappings from arbitrary JSON terms to RDF IRIs. In our
case, if the JSON terms for a specific standard are known in
advance, one can generate a JSON-LD context to map them
to minted IRIs and thus obtain an RDF representation of the
original JSON document.

More formally, there exists a JSON-LD transformation for
any object schema language that can be embedded in first-
order logic (FOL). It is trivial to define a mapping function
7 to transform any JSON value (i.e. a null, boolean, string,
integer, number, array or object value) to a FOL formula.
JSON-LD transformation applies to any schema definition S
for which a FOL formula ® exists, such that a JSON value J
validates against S if and only if 7(J) | ®. It suffices for this
to define a JSON-LD context that maps all atoms in @ (all
fixed terms) to an RDF IRI.

For instance, assuming 7 uses the predicates field, key and
value to represent JSON objects, the oneM2M example of



Sec. 1 would entail the following FOL formula:

AxAydz(field(x,y) A
key(y, containerDefinition) A
value(y,o0.0.h.m.binarySwitch) A
field(x,z) A
key(z, powerState))

The corresponding JSON-LD context would be:

[containerDefinition — rdf:type,
0.0.h.m.binarySwitch — haim:BinarySwitch,
powerState — haim:powerState]

Given this JSON-LD context, the original oneM2M JSON ob-
ject would have the following RDF representation after trans-
formation:

[1 rdf:type haim:BinarySwitch ;
haim:powerState "false" .

Similarly, the OCF object would correspond to the following
RDF triples:

[] rdf:type oneiota:Binary%20Switch ;
oneiota:value "false"

This JSON to RDF transformation works for JSON schema,
without references (JSON pointers) and regular expressions.
To capture the latter two features, monadic second-order logic
(MSO) is required [31]. It is likely that one could generalize
the transformation formalism to MSO but, since our work was
mostly practical and focused on three standards, we leave out
this aspect in this paper. All schemas from IPSO, OCF and
oneM2M are embeddable in FOL.

Alignment with the WoT Cloud

Given a JSON-LD transformation, semantic integra-
tion can be reduced to the problem of semantically
aligning RDF terms, like haim:BinarySwitch or
oneiota:Binary%20Switch, with the WoT cloud.
The research problem of ontology alignment (or ontology
matching) has been formalized and extensively studied in
the past decades [13, 14]. There now exists mature imple-
mentations to solve the specific problem of element-level
ontology alignment. According to the latest benchmarks,
some systems consistently perform good on various tasks,
with precision results above 75% [9].

However, element-level alignment, which consists in finding
semantic relations between individual concepts (e.g. subclass
or subproperty relations), fails at capturing more elaborate
equivalences involving combinations of concepts. The study
of what is often referred to as complex ontology alignment
is still an emerging field and no approach of the state-of-the-
art has proven both efficient and generic yet [14]. We there-
fore took a parallel path by combining element-level ontol-
ogy alignment with so-called SPARQL rules to express align-
ments between WoT standards.

SPARQL rules rely on the SPARQL query language to map
a set of RDF statements with variables (WHERE clause) to an-
other set of RDF statements (CONSTRUCT template), respec-
tively corresponding to the body and the head of a logic rule.
A formal equivalence between SPARQL rules and a subset
of FOL has been defined [32] and, in parallel, a more prac-
tical definition was introduced as part of the SPARQL Infer-
ence Notation (SPIN)!!. The latter is now part of the Shape
Constraint Language (SHACL), an official W3C specification
[25].

We generate SPARQL rules in a semi-manual fashion in two
steps. First, exploiting meta-model information the various
source models provide, we manually define rule tremplates,
for each meta-model, of the form YVYy®(X, y) — A¥ ¢(X, X),
where %, ¥, Z denote the set of variables contained in the FOL
formulas @, ¢. In a second step, the variables of ¥ are sub-
stituted by concepts from the WoT cloud, on the basis of
element-level alignments between atoms contained in ® and
the WoT cloud.

One might note that our rule templates also contain the set
X of variables present in the head but not in the body of the
rule. Although this is generally regarded as unsafe since in-
ference may never terminate, the algorithm SHACL defines
always will: rules can only be applied once. This is not a
strict inferencing mechanism, in the sense that it does not de-
fine a sound and complete algorithm, but it perfectly suits our
needs: since our primary concern is ontology alignment, the
rules we generate can never be chained.

As an example, we have the following alignments available
for oneM2M:

[haim:powerState = saref:0nOffState,
haim:BinarySwitch = saref:Switch]

From these alignments, we can construct the following rule
for the oneM2M binary switch module:

[1 a sh:NodeShape ;
sh:targetNode haim:BinarySwitch ;
sh:rule [
a sh:SPARQLRule ;
sh:construct
CONSTRUCT {
[1 a sosa:Observation ;
sosa:observedProperty [
a saref:0OnOffState
1
sosa:hasResult [
om:numerical_value ?val
1
sosa:madeBySensor [
a haim:BinarySwitch,
saref:Switch
1.
} WHERE {

Uhttp://spinrdf.org/
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?container a haim:BinarySwitch ;
haim:powerState ?val .
}

non

]

and the following one for an OCF switch, with similar align-
ments:

[1 a sh:NodeShape ;
sh:targetNode oneiota:Binary%20Switch ;
sh:rule [
a sh:SPARQLRule ;
sh:construct
CONSTRUCT {
[] a sosa:Observation ;
sosa:observedProperty [
a sosa:ObservableProperty
1;
sosa:hasResult [
om:numerical_value ?val
1
sosa:madeBySensor [
a oneiota:Binary%20Switch,
saref:Switch
1.
} WHERE {
?request a oneiota:Binary%20Switch ;
sw:responses ?data .
?data oneiota:value ?val .

}

IMPLEMENTATION & EVALUATION

The two main implementation tasks in this work were the
extraction of a JSON-LD context from data schemas (Sec.
3.1) and the computation of element-level alignments (Sec.
3.2). Given a lack of common ground across standards in the
data format they use, we implemented context extraction by
JavaScript scripting on the JSON and XML files the different
standardization bodies provide. For the computation of align-
ments, we used the AgreementMakerLight (AML) system
[15], which reports best performances in the Semantic Web
community [9]. We generated SPARQL rules for all model
elements provided by the different standards; if no alignment
was found by AML, we used generic concepts instead, like
sosa:ObservableProperty and saref:Sensor.

We evaluated our approach on two aspects. First, we looked
at the quality of ontology alignment for each SPARQL rule,
that is, the level of specificity of the concepts found by AML.
We call this aspect vertical evaluation (Sec. 4.1). Then, we
made a horizontal evaluation, by comparing the overlap that
exists between standards after data integration (Sec. 4.2). All
implementation details (code, data) as well as the results in-
troduced in this paper are also available on Github'?.

12https ://github.com/vcharpenay/wot-cloud

Table 2. Precision & recall for AML on element-level alignments.

Precision Recall
IPSO 26/28 (93%) 26/38 (68%)

oneloTa  15/17 (88%) 15/31 (48%)
HAIM 23/26 (88%) 23/33 (70%)
0 25 56
IPSO _:
24 74
oneloTa NN \
20 58
HAIM [ |

Figure 1. Number of generated rules by standard (darker areas indicate
rules include concepts from element-level alignments).

Vertical Evaluation

The correctness of our context extraction scripts can be easily
tested by generating random data that validates against some
schema and ensure that the generated SPARQL rules for that
schema get triggered accordingly. In the following, we focus
on the performances of AML.

To be able to evaluate its performances, we manually re-
viewed the possible alignments with the WoT cloud for
all model elements from IPSO (53 LWM2M object defini-
tions, 97 resource definitions), oneloTa (86 Open API spec-
ifications) and HAIM (13 device templates and 41 module
classes). For each model element, we provided zero or one
alignment. From this ground truth, we computed the preci-
sion and recall of AML (Table 2).

In all cases, AML has a very high precision. The rather low
recall for oneloTa is more a sign of implementation peculiar-
ities than theoretical limitations. This case put aside, AML
results indicate that our approach can scale up, if soundness
is favored over completeness. This is of importance, since the
size of the standards models available for WoT is expected to
grow. OneM2M, for instance, has planned several iterations
during which new module classes will be developed.

In total, we could generate 188 SPARQL rules, as shown on
Fig. 1 (our ground truth alignments were also included in the
generation process). We defined one rule template for each
standard, targeting sensors only. In a large-scale setup, actua-
tor definitions may also be included, using the same appraoch.

Figure 1 also shows that only few rules include concepts
resulting from element-level alignments (43% at most, for
IPSO). This means that most rules would only produce
generic statements, essentially that ‘a sensor made some mea-
surement with a certain numeric value’. This lack of details in
the semantics of the measurement indicates a lack of exhaus-
tivity in the WoT cloud: some concepts are missing. There
is, for instance, no concept for ‘oximeter’ or ‘audio device’
in SAREF or OM. However, it appears that most concepts
missing in the WoT cloud are not shared across standards, so
that data integration is of little value for these concepts. Our
next evaluation shows, indeed, that IPSO, oneloTa and HAIM
share a small set of concepts only.
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Horizontal Evaluation

Evaluating the correctness of the rules we generated requires
areference to compare to. One specificity of the standards we
consider in our study is their high terminological homogene-
ity. There are indeed cross-standard efforts to use the same
terms to designate IoT-specific concepts. As we already men-
tioned, events like WISHI contribute to it. As a consequence,
it is reasonable to assume that the lexica used in the specifi-
cation documents of IPSO, oneloTa and HAIM (i.e. the set of
words they contain) is a good approximate for their semantic
content.

On this assumption, we extracted two different lexica for each
standard: one including only the labels of the model elements
they define and one with the labels and textual descriptions of
these model elements. We refer to the second lexicon as the
extended lexicon.

For our extraction, we used well-known text processing tech-
niques also used in ontology alignment [14]: case normali-
sation from camel case, dot notation and low dash notation;
stop word filtering from a list of the 319 most common En-
glish words; synonym expansion using WordNet [29]; word
stemming using Porter’s algorithm [33]. For instance, from
oneloTa’s AtmosphericPressureSensor, one would ob-
tain the three words atmospher, pressur and sensor.

On Fig. 2, we show a comparison of the overlap between
standards for three different sets: lexicon, extended lexicon
and set of rules. For the latter, we consider that rules “over-
lap” if their heads are identical (CONSTRUCT pattern). We
discarded rules for which no alignment is provided, since
their heads are vacuously identical. First, one can see that
the three standards have different levels of documentation:
HAIM has almost no further documentation than labels them-
selves, while oneloTa is much richer. However, regardless of
the size of the sets we consider, we can observe a pattern:
all intersections are small in comparison, especially between
IPSO and HAIM.

This suggests that the semantic overlap between these stan-
dards is lower than originally expected, which also means
that they apply to distinct ontological domains. Full semantic
integration would require a consistent conceptualization cov-
ering the union of these domains, which is challenging. For
instance, oneloTa is the only standard to include environmen-
tal measurement (like CO2 concentration) while only HAIM
gives a definition of an oximeter (measuring blood oxygen
saturation). To our knowledge, there is no well-maintained
ontology covering any of these two cases.

Moreover, one can note that the intersection is higher on rules
than on lexica. This suggests that most of the commonalities
between standards have been captured by alignments with the
WoT cloud. Another way of observing it is to have a closer
look at the intersections themselves. As an example, we re-
ported in Table 3 the core set of 28 words present in all lex-
ica (with labels only). As one could expect, this core lexi-
con includes words like sensor, energy, temperature and
switch. But it is also interesting to note that all model ele-
ments which include these words have an alignment with con-

direct durat audio valu

switch mode button temperatur
rate measure frequenc unit
power factor time energi
percentag level gener activ
input start pressur sensor
current state humid colour

Table 3. Core intersection of all lexica (suffixes in gray were removed by
stemming).

cepts from the WoT cloud. 64% of these concepts are from
SAREF (and they represent more than 80% of the SAREF vo-
cabulary itself) and, although they count for 8% of the total,
all SOSA concepts are present in the set (12 axioms). SSN
and SEAS, since they define high-level concepts, are only
half-preserved after filtering and most OM concepts, whose
scope goes beyond WoT, are not included.

Summary

Our evaluation shows that (1) the set of ontologies from the
WoT cloud must be extended to cover the domains the dif-
ferent standards target (less than half of the concepts they de-
fine are present in the WoT cloud); (2) between themselves,
the standards do not cover the same domains either; (3) for
the concepts they all define (what can be referred to as the
WoT core lexicon), the WoT cloud is a good match, espe-
cially SOSA and SAREF.

CONCLUSION

In this paper, we presented a transformation method that
mostly relies on recently standardized Semantic Web tech-
nologies (JSON-LD and SPARQL rules). It allows arbi-
trary JSON data to be integrated in a unified RDF model,
where reference ontologies exist. In the case of WoT, these
ontologies are SSN, SAREF and SEAS, which we collec-
tively refer to as the WoT cloud. However, our evaluation
on IPSO, oneloTa and HAIM shows that the ontology engi-
neering work around WoT is a work in progress. It must be
extended to cover more than 50% of the concepts these WoT
standards involve.

In any data integration method, as it is the case with our ap-
proach, human input is inevitable. However, we minimize
this effort by working only on schema languages (for the ex-
traction of a JSON-LD context) and meta-models (for the def-
inition of rule templates). Our evaluation shows that rules can
then be generated with high precision and satisfactory recall.
These results appeal for experiments at a larger scale.

Once their data models are integrated, the three standards we
considered here appear complementary rather than compet-
ing. If they were interchangeable, the lexical overlap between
them would be higher. We can therefore conclude that, if
standardization is paramount in the development of WoT, it
is likely that no golden standard will emerge. Semantic Web
technologies have therefore an important role to play in that
respect.



144

409

76 0 28 42 211
IPSO/onelola | [ |
83 35 144
IPSO/HAIM | [ |
67 144
[ | oneloTa/HAIM
152 0 49 149 505
IPSO/oneloTa | \ |
247 54 145
| [ | IPSO/HAIM
96 145
[ | oneloTa/HAIM
13 0 5 12 24
IPSO/oneloTa | | |
18 7 20
\ [ | IPSO/HAIM
13 11 20
| \ | oneloTa/HAIM

Figure 2. Overlap between standards for different sets: lexicon (top), extended lexicon (middle), set of CONSTRUCT templates (bottom).
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