
µRDF Store: Towards Extending the Semantic
Web to Embedded Devices

Victor Charpenay1,2, Sebastian Käbisch1, and Harald Kosch2

1 Siemens AG — Corporate Technology
victor.charpenay@siemens.com, sebastian.kaebisch@siemens.com

2 Universität Passau — Fakultät für Informatik und Mathematik
harald.kosch@uni-passau.de

Abstract. This paper presents the µRDF store, a triple store designed
for micro-controllers with limited memory, typically 8 to 64 kB. The
µRDF store exposes a query interface inspired by SPARQL that supports
basic graph pattern queries. Data is sent over CoAP and serialized in
EXI, a binary format for XML.
The performances of its processing engine are demonstrated in a Web
chat application where the µRDF store can be submitted queries. The ap-
plication is available at: https://vcharpenay.github.io/urdf-amaa/.

Keywords: Web of Things, Internet of Things, SPARQL, RDF, EXI, CoAP

1 Introduction

In the past few years, Semantic Web technologies have been successfuly ap-
plied to the domain of the Internet of Things (IoT). Various systems such as
SPITFIRE [6], mixing RDF and machine-generated data, were developed with
promising results.

In this paper, we explore the possibility of exchanging RDF data in con-
strained environments, in order to extend the scope of the Semantic Web for
the IoT. In particular, we are interested in the problem of storing and querying
RDF data on micro-controllers with IP connectivity (8 to 64 kB RAM).

2 Related Work

Until recently, no realistic use case could be found where computational devices
had limited resources but still IP connectivity. As a consequence, the problem of
storing RDF in constraind environments, as opposed to storing billions of state-
ments in very large databases, has remained mostly unexplored. The situation
has changed with the coming of the IoT where RDF has found new usages.

The first work that addressed constrained devices —and to the best of our
knowledge, the only one— is the Wiselib TupleStore (as part of SPITFIRE) [4].
It compares the performance of various C++ data structures to compress URIs,
inherent to any RDF document.

https://vcharpenay.github.io/urdf-amaa/

The Wiselib TupleStore features insertion and removal operations. There
exists other proposals to compress RDF data but none of them have these char-
acteristics. The most notable ones are the Header Dictionary Triples (HDT)
binary representation for RDF [2] and k2-triples, a variant of HDT [1]. The
main objective of HDT was to compress large RDF datasets. e.g. to fit in the
main memory of a standard PC. But its compression scheme could reasonably
be used on small datasets as well.

In the original proposal for HDT, triples are stored using bitmaps on which
compression is applied. k2-triples indexes triples in subject-object indexes (verti-
cal partitioning) and applies k2-tree compression on the two-dimensional arrays.

HDT and k2-triples show high compression ratios. However, in a typical IoT
configuration, RDF data might be dynamically updated, which requires insertion
and removal operations. Moreover, neither the Wiselib Tuplestore nor HDT/k2-
triples go beyond triple pattern matching to query RDF. Our proposal, the
µRDF store, combines both a small memory footprint with insertion/removal
operations and Basic Graph Pattern (BGP) processing. It is presented next.

3 Overview of the µRDF Store

A few assumptions were made in the design of the µRDF store. First, it is
expected that datasets contain a limited number of triples, to fit in the RAM
of a micro-controller. Second, we expect datasets to contain mostly assertional
data, as opposed to terminological data.

3.1 Data Structure

The data structure underlying the µRDF store is optimized for navigational
queries (i.e. with bound predicates) against datasets having few distinct proper-
ties (max. n properties). Each resource is given an index number where the first
n indices are reserved for predicates (in practice, n = 32 or 64, i.e. a multiple of
the size of a machine word). Triples are stored with variable-length byte (vbyte)
encoding in a way that navigation from every resource to its neighbors in the
RDF graph is possible both forward and backward. Triples with literals are only
stored once.

Formally, for I, B and L mutually disjoint sets of IRIs, blank nodes and
literals respectively, a µRDF resource ρ ∈ P is the pair (R,L) where R ⊂
I × (I ∪ B) × {0, 1} is the set of direct and reverse relations to other resources
and L ⊂ I × L is the set of literal relations associated to ρ. An instance of the
µRDF store is a map µ : (I ∪B)→ P .

3.2 Query Interface

The µRDF store supports BGP queries (given that at least one subject or ob-
ject is bound). Queries are processed in a greedy fashion: as soon as a binding is
found for a triple pattern, the next triple pattern is processed. This guarantees an

upper bound of O(|V |) for intermediate storage, where V is the set of variables
in the query. This process, that might lead to duplicated calls, avoids manag-
ing arbitrarily large intermediary results (e.g. for patterns with the rdf:type

predicate), which is critical in constrained environments.
To exchange data over the network, data is serialized in the Efficient XML

Interchange (EXI) format. Our original proposal for the µRDF store suggests
that EXI, that can take advantage of schema information from RDF/XML, offers
satisfactory compression ratios [5].

Moreover, a straightforward mapping of the HTTP SPARQL 1.1 protocol
can be defined for the Constrained Application Protocol (CoAP), where both
query and update are supported. The CoAP specification limits the payload
size to 1024 bytes. If the serialized result set is above this value, the algorithm
described above allows data to be sent “block-wise”: each full mapping found by
the algorithm is sent in a separate block3.

4 Evaluation

We implemented the µRDF store for the ESP8266, a microcontroller with an
integrated Wi-Fi chip (64kB RAM, 80 MHz). To test its performances, we used
the dataset generator and the query mix provided by the Lehigh University
Benchmark (LUBM) [3]. The generator had to be adapted to small datasets4.
All fourteen queries of the benchmark can be processed by our implementation.

We compared the memory footprint of our implementation to the Wiselib
tuplestore, HDT and k2-triples (Fig. 1a). The comparison suggests that, over-
all, HDT performs best, followed by the µRDF store, in the range we consider
of interest (up to 10,000 triples). It is reported in the literature that k2-triples
performs better but the graphic shows that this does not apply to small RDF
datasets. It also shows that URI compression as performed by the Wiselib tu-
plestore performs poorly for datasets with less than 1,000 triples.

The original idea behind the µRDF store is to explore SPARQL as a decen-
tralized discovery mechanism among IoT devices. This requires at least BGPs
to be supported by individual nodes. As mentioned before, no work in the state-
of-the-art has proposed an implementation of BGP processing at the scale of a
micro-controller.

On the MSP8266, all queries from the LUBM benchmark —especially Q9 that
requires many intermadiary joins— are processed in less than 20ms, including
EXI coding. In comparison, sending static RDF/EXI data over CoAP takes
at least 500ms and this number grows with the number of triples being sent
(Fig. 1b), which means that query processing has no significant impact on the
overall exchange between two devices. On the contrary, local BGP processing,
in constrat to other RDF query mechanisms such as Triple Pattern Fragments

3 The demonstration presented in this paper also exploits this partitioning of the result
set with MQTT, another IoT protocol: each mapping is published in a separate
MQTT message.

4 See https://github.com/vcharpenay/urdf-store-exp for more details.

https://github.com/vcharpenay/urdf-store-exp

(a) Memory footprint (b) CoAP round-trip time (RTT)

Fig. 1: Evaluation of the µRDF store with LUBM synthetic data

(TPFs) [7], can significantly improve the rapidity of an exchange by reducing
the total amount of exchanged data.

Our work on the µRDF store has led us to the following conclusion: with
today’s hardware, an “Embedded Semantic Web” is possible. As opposed to
HDT, the µRDF store supports updates and BGP processing; without degrading
data transmission; with a limited overhead in memory.

5 Demonstration: Ask Me (almost) Anything

The purpose of this demonstration is to illustrate the conclusions of our eval-
uation in an interactive fashion. We developed a simple chat application that
allows one to submit queries in a simplified manner to an instance of the µRDF
store from their Web browser. Its design is inspired by a concept popularized by
Reddit called Ask Me Anything (AMA). Here, a microcontroller invites you to
an AMA session to let you discover its name, its capabilites and the “Things” it
is semantically connected to.

Figure 2a shows the Web interface on which queries can be formulated. The
technical details of the demonstration are given in Fig. 2b. A client query is
first pre-processed by the so-called “advisor”, a non-constrained machine that
first translates the query into SPARQL, then serializes it in EXI; the EXI is
processed by the micro-controller which responds with another EXI message; the
server response is post-processed by the advisor to print it in a human-readable
form. All the messages are sent via the Message Queue Telemetry Transport
(MQTT) protocol following a simple publish-subscribe interaction pattern. The
delay between requests and responses does not exceed a few seconds.

6 Conclusion

IoT devices that embed a full IP-based communication stack usually come with
unused computational power. As current applications mostly concentrate on
sending sensor data to the Cloud as fast as possible, the capacities of edge de-
vices remain untapped. With the µRDF store, we aim at relocating intelligence

(a) Web client screenshot (b) MQTT message exchange

Fig. 2: Overview of the Ask Me (almost) Anything (AMaA) application

to the edge, starting with semantic processing. Our demonstration underlines
the relevance of an Embedded Semantic Web for the IoT.

Another aspect that this demonstration tends to show is that human–to–
machine communication is tedious. IoT systems might be much more performant
if machines themselves formulated the queries. This is our next line of research.
Support for the OPTIONAL operator is also being considered in our implementa-
tion.

References

1. S. Álvarez-Garćıa, N. R. Brisaboa, J. D. Fernández, and M. A. Mart́ınez-Prieto.
Compressed k2-triples for full-in-memory RDF engines. CoRR, abs/1105.4004, 2011.

2. J. D. Fernández, M. A. Mart́ınez-Prieto, M. Arias, C. Gutierrez, S. Álvarez-Garćıa,
and N. R. Brisaboa. Lightweighting the web of data through compact RDF/HDT.
In J. A. Lozano, J. A. Gómez, and J. A. Moreno, editors, Advances in Artificial
Intelligence, volume 7023, pages 483–493. Springer Berlin Heidelberg, 2011.

3. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web,
3(2-3), 2005.

4. H. Hasemann, A. Kröller, and M. Pagel. The wiselib tuplestore: A modular RDF
database for the internet of things. CoRR, abs/1402.7228, 2014.

5. S. Käbisch, D. Peintner, and D. Anicic. Standardized and efficient RDF encoding
for constrained embedded networks. In F. Gandon, M. Sabou, H. Sack, C. d’Amato,
P. Cudré-Mauroux, and A. Zimmermann, editors, ESWC 2015, pages 437–452,
Cham, 2015. Springer International Publishing.

6. D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
A. Kröller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and
R. Richardson. SPITFIRE: toward a semantic web of things. 49(11):40–48.

7. R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. V. d. Walle. Querying datasets on
the Web with high availability. In P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C. Knoblock, D. Vrandei, P. Groth, N. Noy, K. Janowicz, and C. Goble, editors,
ISWC 2014, pages 180–196. Springer International Publishing.

	RDF Store: Towards Extending the Semantic Web to Embedded Devices

