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Abstract—Modeling devices has become a crucial task in the
Internet of Things (IoT) and Semantic Web technologies are seen
as a promising tool for this purpose. However, as it may be
arduous to manipulate semantic models, industrial solutions often
re-define non-standard, simplified semantics. This is the case with
Project Haystack, a framework to tag devices with labels from a
predefined vocabulary in the field of Building Automation.

In order to make Project Haystack standard and fully
semantic, we wrapped its vocabulary in an ontology. In this paper,
we present the general structure of this ontology, along with a
method to turn tag sets into a Semantic Web model and back. The
whole results in a reusable ontology design pattern. We aligned
our Haystack tagging ontology with the wide-spread Semantic
Sensor Network upper ontology and we designed a configuration
environment for Building Automation systems based on semantic
data, so as to discuss the added-value of semantics in automation.

I. INTRODUCTION

The trend of the Internet of Things (IoT) focuses on
designing systems with small and affordable devices capable
of pervasive computation, such as sensing devices or remotely
controllable building equipments. It is based on the assumption
that the number of IoT devices in the system is high.

While the aim of the IoT as a research field is to leverage
the interplay between all those devices to create elaborate
applications, it faces a major issue: IoT eco-systems are highly
heterogeneous and require a lot of integration effort.

This is especially true in the context of Building Automa-
tion. Several incompatible yet equivalent standards emerged for
Building Automation Systems (BAS), namely BACnet, KNX
and LonWorks. Forced by the trend of the IoT, devices that
until now controlled separate functions (e.g. lighting, venti-
lation or alarm functions) are now designed to communicate
with each other, whatever communication protocol they use.

To address the problem of the interplay of heterogenous
BAS, the need for a standardized generic model emerged, to
describe what different Building Automation components may
have in common. More precisely, there is currently no way
to describe the semantics of those components regardless of
their operational specifications. Project Haystack! is a recent
initiative that aims at providing such a semantic representation.

Uhttp://project-haystack.org/

Project Haystack can be seen from three different perspec-
tives. It consists of:

1) a vocabulary of the domain of BAS, where each term
is identified by a unique label (a Haystack tag),

2)  a domain model giving a context for each tag and

3) a (loosely) REST API providing access to Haystack
tags.

The founders of Project Haystack highlight particularly the
fact that “[they] standardize semantic data models and Web
services” (while they somehow put aside the tag perspective
of the project). However, although it is popular and more and
more adopted by the industry (thanks to its ease of use), Project
Haystack lacks several features in the context of the IoT.
Indeed, their data model exists for now as a text documentation
and is not available in a formal representation. As the number
of connected devices is supposed to continuously increase,
it may raise scalability issues. Moreover, the proposed API
to access Haystack tags does not follow widely-used Web
standards (such as a REST interface or XML/JSON exchange
formats). In particular, the only implementation available is
hardly embedded-compliant. It requires computational power
that most IoT devices of the future won’t have (class I or II
constrained devices, according to IETF terminology [5]).

In this paper, we re-define Haystack tags with the help
of Semantic Web technologies (RDF, OWL, SPARQL) while
keeping their ease of use and flexibility. We aim at keeping the
benefits of a tagging logic by holding all tags, augmented with
a domain ontology to formally describe the standard relations
between the tags, plus a transformation method to turn tags
into graph knowledge and vice versa.

Our re-definition allows for more automated processing
of BAS data and exchange schemes based on well-known
technologies. We discuss in Section II the benefits to formally
represent semantics in the domain of Building Automation and,
more generally in the IoT, by reviewing previous works on this
topic. The ontology we designed is then presented in Section
III. Our contribution is the ontology design pattern we created
for this ontology. A prototype is presented in Section IV so as
to expose in practice the benefits of semantics we previously
identified.



II. RELATED WORK

Numerous works have already been conducted in the field
of semantic models for automation. Most of them have been
driven by IoT requirements. More generally, semantics has
been identified as one of the three main perspectives of the IoT
paradigm (along with network and hardware) [4]. Although
we refer here to “semantic” technologies, it would be more
accurate to speak about “Semantic Web” technologies since
all applications we present here are exclusively implemented
using the semantic stack standardized by the W3C?2.

We distinguished between two kinds of requirements that
led to using Semantic Web technologies: interoperability and
automatic processing. We argue that a formal semantic rep-
resentation of Project Haystack brings a contribution to both
topics.

A. Interoperability

It is stated in its documentation that Project Haystack
“facilitates ‘mapping’ of Haystack semantic tagging with other
relevant standards” [1]. However, Semantic Web technologies
and the principle of Linked Data have been already used for
a couple of years for this purpose.

About the Semantic Web as an interoperability technology,
one remarkable contribution to the IoT was the definition of
the W3C Semantic Sensor Network (SSN) ontology [7]. This
ontology gives a model to describe sensor meansurement ca-
pacities and observation data (among others). The guidelines of
such an ontology date from 2008: a semantic sensor ontology
should help attach spatial, temporal and thematic metadata to
raw sensor observations [20]. The WGS84 Vocabulary3 and the
OWL-Time ontology* were identified as possible formats for
spatial and temporal information (respectively). With the help
of the Semantic Web stack, sensor data can be then published
in the Linked Open Data cloud and used by any high-level
application, regardless of the data acquisition layer [14].

Since its definition, the SSN ontology has been widely used
in IoT projects. SPITFIRE, that can be regarded as the flagship
project for a semantic IoT, developed an ontology that heavily
relies on SSN [15].

Before that time, other uses of Semantic Web technologies
were reported in the context of Building Automation. For
instance, an OWL ontology was proposed to unify the appli-
cation models of BACnet, KNX, LonWorks and ZigBee [17].
Such a generic BAS model has the benefit that the mapping
between the ontology and those protocols has only to be done
once for each protocol. Once the mapping exists, a system
engineer could configure all platforms with a single tool while
protocol-specific parameterization is automatically infered by
formal reasoning.

Similarly, the Ontology Device Description framework [9]
was about separating upper knowledge from manufacturer-
specific information about BAS devices. However, this work
was a competitor to SSN and is now of lower interest since
the latter is about to be standardized.

Another example is an expert system for BAS requirement
elicitation that includes a domain model based on OWL [18].
This model is composed with rules expressed in SWRL, a rule
markup language that integrates with OWL.

B. Automatic Processing

Formal semantics has always come along with techniques
for automatic processing based on declarative knowledge,
i.e. reasoning over this knowledge. Expert systems, as in
the previous example, are one example of such processing.
More recently, as the IoT demands “smarter” devices, new
applications for logic reasoning emerged. The Semantic Web
is then seen as an enabler for autonomous computing.

OWL, the Web Ontology Language’, revolves around the
theory of Description Logic (DL). Provided this formal frame-
work, known inference methods can be used to generate (or
entail) new pieces of knowledge (or axioms) from existing
models. This principle was used to automatically compose
services advertized by KNX devices annotated with DL knowl-
edge [19].

DL reasoning can also be used to check the consistency
of a given model. It has been successfully used for plant
model validation [2]. The dedicated markup format for plant
engineering (called CAEX) had to be mapped to an OWL
ontology first.

To a lesser extent, the formalism of OWL was also used
in a recently published Fault Detection and Diagnosis system
for BAS [16]. In this case, knowledge inference is not done
by reasoning whereas by updating existing knowledge that
matches predefined graph patterns. graph patterns are ex-
pressed as SPARQL queries (or more precisely its counterpart
to update graph knowledge, SPARQL Update®, also called
SPARUL). The infered knowledge corresponds to diagnoses
that are delivered when anomalies are detected. The sensors
are described by means of the SSN ontology.

SPARQL, as a standard query interface for semantic data’,
is another tool to automatically process sensor data. As men-
tioned previously, SPITFIRE describes sensors and sensor data
with an ontology. As a consequence, it is possible to query this
data and act accordingly. Sensor data streams could even be
processed and queried on-the-fly, as events occur [3].

The architecture of SPITFIRE (already mentioned in the
previous section) involves sensors carrying their own semantic
data in a distributed fashion and exposing them through a Web-
based REST interface. This is at the basis of the vision of the
Web of Things (WoT), which shows many benefits. Automatic
service discovery is one of them [6], where SPARQL also plays
a significant role.

To summarize, the Semantic Web has become an integral
part of the IoT, notably because of the features we pointed
out above. In comparison, Project Haystack, while focusing
on similar issues, does not cover all those features with its
own specification.

Zhttp://www.w3.0rg/2001/sw/
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As an illustration, Fault Detection models for BAS can
be classified in three categories, as mentioned in [16]. As a
BAS model, Project Haystack falls in the first category, namely
“physical-based models”, regarded as the one including the
most accurate and exhaustive anomaly detection mechanisms.
However, because Project Haystack lacks a formal model
representation and a more standard API, advanced automatic
building diagnosis based upon it is hardly conceivable.

While we have conciseness and ease of use from one side
and interoperability and automatic processing enablement from
the other side, we argue that we can combine both aspects with
little effort. To this end, we “semantified” Haystack model, i.e.
we created an ontology over the existing Haystack model to
extend its expressiveness. We called this ontology the Haystack
Tagging Ontology.

III. HAYSTACK TAGGING ONTOLOGY

Project Haystack was designed to help system engineers or
domain engineers tag entities involved in a BAS environment.
Entities can be automation devices (such as sensors, actua-
tors or controllers) or building equipment, including Heating,
Ventilation and Air Conditioning (HVAC) assets, lightings or
energy meters.

A tag-based model is intended to be flexible. The tagger
is free to combine any tags of their choice. However, most
of Haystack tags have been designed so that they should be
combined only in certain ways. Thus, there exists standard
tag combinations corresponding to well-known building equip-
ment. That is, there is also a pre-defined domain model behind
Haystack tags, as mentioned in the introduction. The Haystack
Tagging Ontology (HTO), presented in this paper, is an attempt
to formalize this model. An overview of the ontology is given
in Figure 1.

A. Design Pattern

Although a formal representation has several benefits, the
tag structure of Project Haystack has been motivated by a clear
requirement: it should provide a BA domain model that is
quickly understandable and easy to use. Indeed, the growing
complexity of BAS architectures, generating more and more
data, should be hidden from the domain engineer that has in
general limited knowledge about information technologies.

Moreover, Haystack tags have the benefit of being concise.
They could be locally stored and shared directly between field
devices. In the context of the WoT that [15] and [6] embody,
it may be of interest to keep Haystack tag structure to let
embedded devices describe themselves.

Therefore, our ontology tries to combine the benefits of
a tag representation (ease of use, conciseness of tags) with
those of a formal representation (interoperability, automatic
processing). To this end, HTO presents a novel ontology design
pattern (in the sense of [10]) that makes both representations
possible, along with a transformation method between them.

This design pattern consists in separating the vocabulary
part (raw tags) from the ontological part (types and relations).
Vocabulary and ontological relations are made consistent with
each other thanks to a common meta-model. Figure 1 shows

the 3 resulting fragments (although they cannot be represented
in OWL): vocabulary, domain model and meta-model.

In this design pattern, the domain model and the vocabulary
are aware of the meta-model, i.e. their entities subsume or ref-
erence those of the meta-model. The contrary should not hold.
What is more, the vocabulary annotates the domain model
while the latter is not aware of the vocabulary. The presence of
a meta-model makes possible a model transformation between
the vocabulary and the domain model since they can refer to
each other (see Section III-C).

In the following, we first introduce how Haystack tags were
integrated into HTO, that is, the vocabulary part. Then, we
present the domain model and the transformation method that
our design pattern enables.

B. Haystack Vocabulary RDF Representation

As one can see in Figure 1, all Haystack tags are of type
HTag. In OWL terminology, the latter is called a class while
tags are individuals. As mentioned previsouly, Haystack tags
are used to tag BAS entities, hence the definition of the class
HEntity and the relation hasTag linking HEntity with
HTag. A relation in OWL is called a property.

Classes, individuals and properties are all uniquely
identified as Semantic Web resources, that is, they are
given a URI composed of a namespace (we arbitrar-
ily chose <http://project-haystack.org/hto#>)
and a local name (represented in the diagram). For
instance, the tag sensor is actually fully identified
by <http://project-haystack.org/hto#sensor>
(or in its short form, hto: sensor). It is especially useful for
tag individuals, so that they can be unambiguously referred to.

To link entities with each other (for instance, sensors
with the building equipment it belongs to), Haystack uses
references, wich are a special kind of tag including the name
of the referenced entity with tag label (as a key/value pair).
So as to be referenced, Haystack entities must have an id
tag, also expressed as a key/value pair. In HTO, we modeled
references with the property hasRef while 1d is not required
anymore since we use URIs.

For human readability, Haystack entities may also declare
a textual description (using the tag dis). The Semantic Web
already standardized powerful textual annotation tools (e.g.
using Dublin Core vocabulary). In HTO, we simply replaced
the tag dis with the property rdfs:label®, which is the
simplest way to annotate a Semantic Web resource.

All this put together, the proposed Semantic Web repre-
sentation for tags is a simple RDF document declaring an
HEnt ity with one or more relations to Ht ags and/or to other
Haystack Entities. A relation involving two elements linked
together by a property is called a triple.

Let us assume we have a data point measuring temperature
where air from a Air Heating Unit (AHU) is supplied (or
discharged) to a room. This data point would be modeled with
the following tags in Haystack:

8http://www.w3.org/TR/rdf-schema/\#ch\_label
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Fig. 1. Overview of the Haystack Tagging Ontology. OWL entities in the vocabulary are all individuals, while other entities are classes (namespaces were

omitted). Names in parenthesis indicate equivalent entities from SSN. For sake of simplicity, only a few subclasses are represented.

Listing 1. A Haystack-tagged entity (Zinc syntax)
id: @point01254

dis: "point01254"

sensor
temp
discharge
equipRef: @equip07454

would then have the following RDF triples (we assumed that
all entities are defined in the universal example namespace
http://example.org#, short ex:):

Listing 2. RDF representation of entity of Listing 1 (N3 syntax)

ex:point01254 rdf:type hto:HEntity;
rdfs:label "point01254";
hto:hasTag hto:sensor;
hto:hasTag hto:temp;
hto:hasTag hto:discharge;
hto:hasRef ex:equip07454.

It is worth noting here that we did not consider the whole
set of Haystack tags. There exists other kinds of key/value
tags for numbers, strings, etc. Similarly to rdfs:label,
RDF provides better ways to express such values. It includes
for instance a full standardized type hierarchy (XML Schema
datatypes). Though, the subset we considered represents 86%
of Haystack model (145/169 tags).

Moreover, Project Haystack also intends to model the
whole building so that its location can also be tagged. Again,

the Semantic Web already has extensive tools to handle
geographic data, so we did not include sites in HTO. The
WGS84 vocabulary cited by [20] and GeoSPARQL’, the
SPARQL extension for geograhical data standardized by the
Open Geospatial Consortium (OGC), are better candidates for
this purpose.

A substantial benefit of having an RDF representation
of Haystack tags is that they can be easily exchanged and
consumed through a standard interface. Project Haystack also
identified the need for easy tag consumption; it specifies its
own interface to read tags and navigate from one entity to
another.

Regarding the navigation, the Semantic Web makes it
significantly simple thanks to URIs: from point 01254, one
simply has to follow the URL of equip07454 to navigate
further (i.e. <http://example.org#equip07454>).
This is the core idea of Linked Data'®, a well-known part of
the Semantic Web already explored in [14] for sensor data.

In practice, Haystack tags are often stored in a central
repository running a single Haystack server. In this case,
reading tags in RDF can be made through SPARQL. This
standard Semantic Web query language specifies how to search
for graph pattern, filter values or combine knowledge in
a very expressive way. Additionally, two HTTP interfaces

9http://www.opengeospatial.org/standards/geosparql
10http://www.w3.org/Designlssues/LinkedData.html



have been standardized to submit SPARQL queries. All the
features intended to be standardized by Project Haystack’s API
(type definition, query interface, filters and navigation) can be
superseded by SPARQL.

In the case where the tags are carried by field devices, the
limited device computational power prevents SPARQL to be
used directly. It is still possible to retrieve them as a Linked
Data document, though. Effort has been recently made to bring
the semantics down to the field device (as part of the self-
reporting paradigm of the WoT) [11], [13]. These approaches
propose efficient and compact binary formats for RDFE. A
Semantic Web search interface for embedded devices is part
of future work.

C. Domain Model and Transformation

Representing Haystack tags in RDF presents the benefit
of using standard and already implemented Web technologies.
However, as such, the contribution in automatic processing
remains poor. To address this second issue, HTO has to provide
a Semantic Web representation of the model behind Haystack
tags.

Haystack provides a domain model. It describes general
BA concepts regardless of how they are used in a given BAS
configuration. A domain model is intended to be re-used and
extended by an application model according to specific needs.
In most ontology engineering methods, domain knowledge
is often captured in the following successive forms: first as
a lexicon of domain-specific notions, second as a glossary
(previously identified notions are enriched with definitions)
and third as a semantic network, or knowledge graph, linking
glossary elements with each other [8].

Project Haystack already built a freely available and well-
documented glossary; one could bring it to the semantic level
with little effort. Our HTO domain model ontology is rather
small. It contains 58 classes, 10 properties and 62 individuals,
for a total of having 128 OWL axioms (as a comparison, SSN
has 644 axioms). Looking at Figure 1, one may note that all
the individuals defined in HTO are tags, which means that we
included roughly half of the whole tag set (references do not
count).

Roughly, our proposed model defines ontological properties
between high-level classes (Point, Section, Equipment,
Measurement and PhysicalBody) and a taxonomy for
each of these classes. The central classes are Point and
Equipment. The former models data points, i.e. automation
devices that produce or consume data while the latter models
any kind of building equipment that is automated. Equipments
are further splitted in Sections, modeling e.g. ductwork,
condenser or heat wheel.

Having high-level classes greatly facilitates querying. For
instance, it would be easy to formulate queries such as “find all
equipments” or “find everything that is quantified for a given
equipment” (the latter is part of the SPARUL query in Listing
11). Such queries are hardly expressible with raw Haystack
tags. For instance, finding all equipments would require the
use of each equipment tag (vav, ahu, chiller, etc).

So as to combine the ease of use of Haystack tags and
machine processing capabilities of the Semantic Web, we

designed the ontological model so that an automatic transfor-
mation is possible from the vocabulary to the domain model.

For each tag from the vocabulary, we defined an OWL
class in the domain model. The mapping between them is
indicated by an annotation property: hto:associatedTo,
which is the cornerstone of the design pattern used in HTO.
As an example, the ontology contains the axiom hto:temp
hto:associatedTo hto:Temperature. Therefore, if
a given entity is tagged with temp, the domain model should
reflect it by having an individual of type Temperature. We
can fomulate this transformation rule the following way:

Listing 3. First HTO transformation rule (N3 syntax)
@forSome :i.
{ ?e hto:hasTag ?t.
?t hto:associatedTo ?c. }
=>
{ :1i a ?c. }.

The implication notation of N3 syntax should be read as
follows: for each triple pattern in the antecedent (upper part)
where variables ?e, ?t and ?c can be bound with existing
individuals (respectively an entity, a tag and a class), the
pattern in the consequent (lower part) should hold. In practice,
in order to match this rule, 21 is bound to a new individual,
whose local name is arbitrarily chosen (in our examples, the
tag label and a random four-digit number are concatenated).

In the particular case where the OWL class bound to ?c is
a subclass of HEntity, 21 should be bound to the individual
that carries tags — which already exists. This could be done
by asserting that the created individual and the existing one
are strictly equivalent, using owl : sameAs.

If we apply this rule on our previous example of Section
III-B, we obtain the following individuals:

Listing 4. Result of the Ist rule applied on example of Listing 2
ex:sensor03588 a hto:Sensor.
ex:temp05488 a hto:Temperature.
ex:discharge06954 a hto:Discharge.
ex:point01254 owl:sameAs ex:sensor03588.

The second transformation rule applies to Haystack refer-
erences, which are simply translated into the equivalent notion
in the domain model. It is as follows:

Listing 5. Second HTO transformation rule (N3 syntax)
{ ?e hto:hasRef ?ref }

=>

{ ?e hto:belongsTo ?ref. }.

The reference declared by point 01254 becomes:

Listing 6. Result of 2nd rule applied on example of Listing 2
ex:point01254 hto:belongsTo ex:equip07454

A third transformation rules is used to add links between
the individuals created by the first rule (Listing 3). It is based
on the assumption that all properties of the domain model
define a source class and a target class. I.e. the domain and the
range of the properties have to be asserted. We designed HTO
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accordingly, which gives us the possibility to infer the right
relation between individuals by comparing the domain and the
range of available properties in the ontology, as follows:

Listing 7. Third HTO transformation rule (N3 syntax)
{ 211 a 2cl.
?1i2 a ?c2.
?p rdfs:domain ?cl;
rdfs:range ?c2. }
=>
{ 11 ?2p :12 }

The properties infered by this rule in our example are the
following:

Listing 8. Result of 3rd rule applied on example of Listing 2
ex:point01254 hto:quantifies ex:temp05488;
hto:locatedOn

ex:discharge06954.
ex:equip07454 hto:hasSection
ex:discharge06954.

If we successively apply the three rules we have just
presented, we are able to generate the graph knowledge
summarized in Figure 2. The reverse transformation is triv-
ial. To retrieve the Haystack tags that are associated to a
given HEntity, we gather all individuals that are in its
neighborhood in the knowledge graph, recursively, until either
another HEntity is reached or the neighborhood is empty.
The domain model should then be acyclic, which holds if it is
a simple directed graph (per definition).

| HEntity | Sensor |

belongsTo
equip@7454 )¢ ------- point@1254
/

\ /
\ /

quantifies

\ /
\ locatedOn
\

/
hasSection \ /
3y /
discharge06954

Fig. 2. Graph knowledge generated from the tagged entity of Listing 2
(namespaces were omitted).

IV. PROTOTYPING & DISCUSSION

As mentioned earlier, the concepts we present here, such as
our ontology design pattern and the automatic transformation
rules have been prototyped in the form of a small OWL
ontology. We performed several tests on this ontology using
the standard tag combinations provided by Project Haystack'!.
We generated a test case with one building containing the
four main HVAC equipments modeled by Haystack (ahu,
vav, vid and chiller), equipped with all data points that
correspond to a standard combination.

We implemented the model transformation using the OWL
API [12] combined with Pellet reasoner [21]. Recently,
SPARUL has been standardized as another tool to manipulate
RDF data. It is actually an interface that takes SPARQL

http://project-haystack.org/download\ #equip-points

syntax to create, update or delete data in semantic repositories.
However, SPARUL is not tied to OWL. It does not easily
integrate DL reasoning tools. Because we intend to benefit
from DL reasoning for automatic processing, we discarded
SPARUL for this implementation.

A. Reversibility

We first tried to assert that HTO captures the semantics
of standard combinations defined by Project Haystack. A way
to do it is to the check that the transformation we proposed
is reversible for all of those combinations. Starting from a
tag representation of the example we built with standard tag
combinations, we turned it into a knowledge graph and back
(with the reverse transformation we also briefly mentioned)
and compared the generated tags with the original ones.

Among the 85 standard data points defined by Project
Haystack for the main HVAC equipments, our prototype covers
67 of them (the remaining includes tags that have not been
modeled yet). As expected, all combinations could be recon-
structed after the transformation.

However, for arbitrary tag combinations, the reversibility
can not be guaranteed. Indeed, not all possible co-occurences
are modeled by the domain model of HTO. Our prototype
models about 200 co-occurences while there are 3782 possible
tag pairs in total (62 x 61). If a new tag combination is
given, there may exist no suitable property to link the created
individuals (Listing 7). As the size of the model will grow
(Project Haystack is still an on-going activity), the problem
may become critical.

The definition of a strict domain and range for each
property makes the domain model rather fixed and the do-
main knowledge that is automatically asserted may became
erroneous if tagging usage is changing over time. However, if
BAS engineering and provisioning are assisted with ontologies
and automatic tools built upon it, this situation is not likely to
happen.

B. Consistency Check

While the fact that tagging usage may change over time
is unlikely, it is still possible to use tags in a inconsistent
manner. Formal logic helps prevent this from happening thanks
to automatic consistency checking. For instance, one may tag a
single data point with both sensor and cmd, misinterpreting
the role of data points in the system. In this case, a DL
reasoner will be able to detect this inconsistency since the
classes Sensor and Command are disjoint in the ontology:
an entity is not allowed to belong to those two classes in the
same time.

In our implementation, the consistency of the graph knowl-
edge generated from tags is always checked. We ensured that
the overall system in our test case, containing 50 sensors and
22 actuators (or commands) and setpoints, makes sense. We
even use consistency checking to solve particular cases where
Haystack tags are inherently ambiguous.

For instance, the tag fan can be modeled either as a section
of an equipment (Fan) or as a whole equipment VEDFan),
depending on co-occurring tags. In HTO, fan is associated to



both classes. At the time of the transformation, the generated
knowledge is detected as inconsistent since the tagged entity
is asserted both types, which are also declared as disjoint (all
high-level classes are disjoint).

As a result, changes are dismissed and our implementation
checks types one after the other. If fan co-occurs with cmd,
then the tagged entity typed VEDFan leads to an inconsistency
and the tag is finally associated to Fan, a section of an Air
Heating Unit or a Variable Air Volume system. This example
illustrates how formal modeling can meet tagging flexibility.

C. BAS Provisioning

HTO focuses on bringing interoperable models and en-
abling automatic processing in the different phases of a BAS
lifecycle. About interoperability, the Semantic Web facilitates
alignment between ontologies and semantic data sets. For in-
stance, it is possible to integrate the SSN ontology (mentioned
in Section II-A) into HTO so as to unify sensor data.

In the test case we built, there is only one HVAC system
managing a single room (modeled as a zone in Haystack). If
one wants to share the room temperature to external high-
level applications, one could easily take advantage of the
existing model to generate SSN data. As an example, Pellet
DL reasoner can infer SSN data in Listing 10 from HTO data
in Listing 9.

Listing 9. HTO representation of a room temperature sensor
ex:point01254 a hto:Sensor;
hto:quantifies ex:temp05648;
hto:locatedOn ex:zone09655.
ex:temp05648 a hto:Temperature.
ex:zone09655 a hto:Zone.

Listing 10. SSN/QU representation of a room temperature sensor

ex:point01254 a ssn:SensingDevice;
ssn:observes temp05648;

ex:temp05648 a qu:Temperature;

ssn:isPropertyOf ex:zone09655.

ex:zone09655 a ssn:FeatureOflInterest.

The equivalence can be  purely expressed
in OWL (using owl:equivalentClass or
owl:equivalentProperty) and generated by a DL
reasoner. We defined several alignments in HTO as indicated
in Figure 1. In this particular example, we used the W3C
ontology for Quantity Kinds and Units (QU) to get a SSN-
compliant definition of temperature'”. Once a data point is
expressed using SSN/QU, one can simply add temperature
values using ssn:SensorOutput.

D. BAS Engineering

As a last example, we focus on automatic processing.
With the help of a SPARUL query, the different equipments
of our test building are turned into “functions” with inputs
and outputs. This offers a view where components can be
composed with each other so that sensors and commands/set-
points directly interact with each other. Since their definition is

2http://www.w3.0rg/2005/Incubator/ssn/ssnx/qu/qu-rec20.html

formal, one could easily think of an automatic composition of
these functions by means of DL reasoning or targeted SPARQL
querying, as in [19] or [16].

Though, BAS automatic processing was not the scope of
the present paper. Instead, we included HTO in an engineering
tool to manually compose BAS functions. The tool we use
here is a flow-based configuration environment. L.e. functions
are represented as nodes and data flow as edges that connect
functions with each other. The resulting configuration can then
be seen as a graph.

To integrate HTO into this tool, we applied the query given
in Listing 11 on the semantic data we generated for our test
building. As an interface, we created a simple ontology (pre-
fixed by fbc:, which stands for Flow-based Configuration)
that define Component (i.e. node or function) and Input
and Output.

Listing 11.
components

INSERT {

?eq a fbc:Component;
fbc:hasOutput ?measout;
fbc:hasInput ?measin.

} WHERE {

?out a hto:Sensor;
hto:quantifies ?measout;
hto:belongsTo ?eq.

SPARUL query turning Haystack entities into flow-based

?in a hto:Command;
hto:quantifies ?measin;
hto:belongsTo ?eq.

} UNION {

?in a hto:SetPoint;
hto:quantifies ?measin;
hto:belongsTo ?eq.

Once the query is executed, the building data can be
visualized (see Figure 3).

This idea of flow-based configuration or automatic compo-
sition was already presented in [17] and [9]. The latter presents
an ontology for BAS controllers, which defines controller
profiles (equivalent to components). Data points attached to
a controller profile also form inputs and outputs. However,
contrary to us, they separate the notions of component and
function: a controller profile can implement several functions.

This way, they follow IEC specification of function blocks
(IEC 61499) to model distributed industrial systems. This point
of view was motivated by the presence of controller devices
between field devices and other infrastructures. However, as
a consequence of the IoT trend, controllers tend to disappear
now that field devices become powerful enough to handle data
themselves. Our example tries to adopt a more IoT-oriented
flow-based model.

V. CONCLUSION

The present paper presented an ontology for Project
Haystack domain model in order to be able to combine
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Fig. 3. Flow-based configuration environment that let communication
between field devices be visually parameterized (on this example, connections
have no precise meaning). The components represented here were automat-
ically generated from the sections of the Air Heating Unit of our test case.
Inputs and outputs are data points.

proven Semantic Web technologies (SPARQL querying, DL
reasoning) with Haystack tags. The ontology design pattern we
applied, while providing a formal representation, also keeps the
benefits of a tag representation (i.e. conciseness and ease of
use): the prototype we modeled allows a reversible automatic
transformation between tags and graph knowledge for most of
the standard tag combinations.

However, several limitations have been identified in the
discussion. First, although they have been identified as a
key element in the context of the Web of Things, Semantic
Web technologies hardly scale to embedded environments.
We previously mentioned that field devices cannot run a
whole SPARQL endpoint to search their semantic data, in
which case it should be substituted by a static Linked Data
document. Moreoever, as we noted during our experiments
about consistency checking, DL reasoners may also cause
scalability issues since they require high computational power.
As we embrace the vision of the Web of Things, designing a
light version of the Semantic Web is part of our future work.

Second, because Project Haystack is an on-going activity
and is destined to evolve, an ontology may not perfectly fit.
In particular, tagging usage may change over time, which
would not be reflected by the ontological model. Still, if the
transformation method we proposed does not meet the need
of the industry, the RDF exchange format for Hastack tags
we presented as a first contribution remains of interest as
an interoperabilty and extensive annotation enabler. A key
element is its alignment with SSN/QU.
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